首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The frequency of neighboring base pairs in nucleotide sequences of over 80 genes and pseudogenes of low molecular weight RNAs U1-U8, 4.5S and 7S in different eukaryotes was determined. The probable frequency of CpG----TpG + CpA substitutions, caused as a result of the deamination of 5-methylcytosine residues in DNA, was determined. It was found that the genes of small RNAs do not reveal a single level of CpG methylation for all the species studied. In most cases CpG in the genes of U1, 4.5S and 7S RNA are methylated, whereas in the genes of U2-U6-RNA these sites must have never been subjected to methylation. Nearly all the investigated pseudogenes of different small RNAs are strongly methylated due to a considerable lack of CpG. It was established that CpG----TpG + CpA transitions may amount to as much third of all the mutations accumulated in the genes of the same RNAs in different species. Such transitions in pseudogenes may account for 40% of all the nucleotide substitutions. This disproportionately high level of mutations in CpG dinucleotides (3-5-fold higher than in other DNA dupletes) must be the direct result of the methylation of these sites. Consequently, CpG methylation causes a dramatic acceleration of the divergence rate of DNA sequences. It has been concluded that protection of most vital genes against methylation is one of the essential conditions for sustaining the high level of stability of the macromolecular structure and for the reliability of macromolecular functioning in a cell.  相似文献   

3.
Intermolecular duplexes among large nuclear RNAs, and between small nuclear RNA and heterogeneous nuclear RNA, were studied after isolation by a procedure that yielded protein-free RNA without the use of phenol or high salt. The bulk of the pulse-labeled RNA had a sedimentation coefficient greater than 45 S. After heating in 50% (v/v) formamide, it sedimented between the 18 S and 28 S regions of the sucrose gradient. Proof of the existence of interstrand duplexes prior to deproteinization was obtained by the introduction of interstrand cross-links using 4'-aminomethyl-4,5',8-trimethylpsoralen and u.v. irradiation. Thermal denaturation did not reduce the sedimentation coefficient of pulse-labeled RNA obtained from nuclei treated with this reagent and u.v. irradiated. Interstrand duplexes were observed among the non-polyadenylated RNA species as well as between polyadenylated and non-polyadenylated RNAs. beta-Globin mRNA but not beta-globin pre-mRNA also contained interstrand duplex regions. In this study, we were able to identify two distinct classes of polyadenylated nuclear RNA, which were differentiated with respect to whether or not they were associated with other RNA molecules. The first class was composed of poly(A)+ molecules that were free of interactions with other RNAs. beta-Globin pre-mRNA belongs to this class. The second class included poly(A)+ molecules that contained interstrand duplexes. beta-Globin mRNA is involved in this kind of interaction. In addition, hybrids between small nuclear RNAs and heterogeneous nuclear RNA were isolated. These hybrids were formed with all the U-rich species, 4.5 S, 4.5 SI and a novel species designated W. Approximately equal numbers of hybrids were formed by species U1a, U1b, U2, U6 and W; however, species U4 and U5 were significantly under-represented. Most of these hybrids were found to be associated stably with non-polyadenylated RNA. These observations demonstrated for the first time that small nuclear RNA-heterogeneous nuclear RNA hybrids can be isolated without crosslinking, and that proteins are not necessary to stabilize the complexes. However, not all molecules of a given small nuclear RNA species are involved in the formation of these hybrids. The distribution of a given small nuclear RNA species between the free and bound state does not reflect the stability of the complex in vitro but rather the abundance of complementary sequences in the heterogeneous nuclear RNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
Electrophoretic analysis of near steady-state labeled nuclear RNA obtained from Friend virus-transformed murine erythroleukemic cells reveals the presence of at least 15 small nuclear RNAs (snRNAs) distinct from ribosomal 5.8S or 5S. Identical qualitative distributions were obtained from logarithmically growing, stationary-phase, and dimethyl sulfoxide-induced, terminally differentiated cultures, indicating the constitutive synthesis of all snRNAs regardless of the proliferative or differentiated state of the cells. However, several quantitative differences in nuclear snRNA levels were observed. Progression from rapidly growing to stationary-phase cultures was accompanied by the marked reduction in accumulation of all snRNAs except the 4.5S snRNAs. Particularly striking were the decreases in levels of U3 and the U1 group, snRNAs that are relatively abundant. Similar reductions were noted when cells were induced to differentiate, except that decreases in the levels of U2 and 4.5S were more dramatic than those seen for cells entering stationary-phase. The data thus demonstrate that snRNA levels may be regulated both in association with changes in proliferative capacity of cells and with changes in gene expression that occur during terminal differentiation.  相似文献   

6.
7.
Small RNAs in sea urchins were examined in order to characterize developmental changes in their level, subcellular localization, synthesis, and association with proteins and other RNAs. Small RNAs such as the U snRNAs, 5S and 5.8S rRNAs, and 7S RNAs were identified by their mobility on highly cross-linked acrylamide gels. In addition, 7SL and U1 RNAs were identified by northern blot hybridization to cloned human and sea urchin probes, respectively. The level, subcellular localization, and association with proteins or RNA do not change for most small RNAs from fertilization to blastula, even though this is the time when the stored maternal pool of many small RNAs is being supplemented and replaced by embryonically synthesized RNAs. New embryonic synthesis of small RNAs was first detected at the 8-12 hr blastula stage. Although the predicted subsets of the total small RNA pool can be found in the appropriate subcellular compartments, newly synthesized small RNAs have a predominantly cytoplasmic localization: All of the newly synthesized small RNAs were found to be constituents of small RNPs. The RNPs containing newly synthesized small RNAs had sedimentation rates indistinguishable from their maternal counterparts. Thus, on the basis of sedimentation rate, no gross differences could be detected between maternal and embryonic small RNP pools. These small RNPs include a cytoplasmic RNP containing newly synthesized U1 snRNA and the sea urchin signal recognition particle (SRP) containing the 7SL, RNA. We have also identified a small RNP bearing the 5S rRNA which is present in both eggs and embryos. The presence of multiple, abundant, small RNAs and RNPs that are maintained at constant levels in particular subcellular fractions throughout development suggests that small RNAs may be involved in many more cellular activities than have so far been described.  相似文献   

8.
9.
10.
Three minor small RNA species from Novikoff hepatoma cells, with homology to repetitive DNA sequences, have been identified and characterized. These small RNAs, designated 5.1S, 6S and T3 RNAs, show homology to Alu 1, Alu 2, and Alu 3 sequences, respectively. 6S and T3 RNAs were found both in the nucleus and cytoplasm, whereas 5.1S RNA was not found in the nucleus. Neural tissues were found to contain a 6S-sized BC1 RNA with homology to I.D. sequences [19]; in contrast, the current study shows that Novikoff hepatoma cells contain a 75–80 nucleotide long (T3) RNA, homologous to I.D. sequences. These data suggest that BCl and T3 small RNAs, homologous to I.D. sequences, are expressed in a tissue-specific manner. These results also show that in addition to the abundant 7SL, 4.5S and 4.5S1 RNAs having homology to repetitive DNA, Novikoff hepatoma cells also contain several minor small RNAs with homology to repetitive sequences.  相似文献   

11.
12.
Small stable RNA molecules of Escherichia coli other than 5S (rRNA) and 4S (tRNA) were studied. Two of the molecules corresponded to 4.5S and 6S RNA, which have been reported previously. The third stable RNA molecule, 10S RNA, has not been described before. RNA labeled with (32)P(i) or [(14)C]uracil for a relatively long time, when separated in 5%/12% tandem polyacrylamide gels, displayed three bands corresponding to 10S, 6S, and 4.5S RNA in addition to rRNA and tRNA bands. These RNAs were stable in pulse-chase-labeling experiments. The amount of these RNAs was small, comprising only 0.2 to 0.5% of the total (32)P incorporation. However, this amount represented a large number of molecules; for 6S and 4.5S, it was about 1,000/DNA molecule. These three RNAs were found in the postribosomal supernatant fraction. None of them was found in purified nucleoid fractions in which the tightly coiled DNA molecules were contained. Of these three RNAs, 6S RNA was unique in that it seemed to exist in a ribonucleoprotein particle. All these RNAs, as well as tRNA, were very stable in the cell under various physiological conditions. 5S RNA was less stable. On the other hand, purified 6S RNA was more susceptible than tRNA to cell nucleases when incubated with cell extracts, suggesting that, being in a particle, it is protected from cell nucleases.  相似文献   

13.
14.
Primary and secondary structure of U8 small nuclear RNA   总被引:20,自引:0,他引:20  
U8 small nuclear RNA is a new, capped, 140 nucleotides long RNA species found in Novikoff hepatoma cells. Its sequence is: m3GpppAmUmCGUCAGGA GGUUAAUCCU UACCUGUCCC UCCUUUCGGA GGGCAGAUAG AAAAUGAUGA UUGGAGCUUG CAUGAUCUGC UGAUUAUAGC AUUUCCGUGU AAUCAGGACC UGACAACAUC CUGAUUGCUU CUAUCUGAUUOH. This RNA is present in approximately 25,000 copies/cell, and it is enriched in nucleolar preparations. Like U1, U2, U4/U6, and U5 RNAs, U8 RNA was also present as a ribonucleoprotein associated with the Sm antigen. The rat U8 RNA was highly homologous (greater than 90%) to a recently characterized 5.4 S RNA from mouse cells infected with spleen focus-forming virus (Kato, N., and Harada, F. (1984) Biochim. Biophys. Acta, 782, 127-131). In addition to the U8 RNA, three other U small nuclear RNAs were found in anti-Sm antibody immunoprecipitates from labeled rat and HeLa cells. Each of these contained a m3GpppAm cap structure; their apparent chain lengths were 60, 130, and 65 nucleotides. These U small nuclear RNAs are designated U7, U9, and U10 RNAs, respectively.  相似文献   

15.
The majority, and perhaps all, of the genes for human U1 small nuclear RNA (U1 RNA) were shown to be located on the short arm of human chromosome 1. These genes were mapped by Southern blot analysis of DNA from rodent-human somatic cell hybrids, using the 5' region of a human U1 RNA gene as a human-specific probe. This probe hybridized to DNA fragments present only in digests of total human DNA or to the DNAs of cell lines which contained human chromosome 1. The major families of human U1 RNA genes were identified, but some human genes may have gone undetected. Also, the presence of a few U1 RNA genes on human chromosome 19 could not be ruled out. In spite of the lack of extensive 5'-flanking-region homology between the human and mouse U1 RNA genes, the genes of both species were efficiently transcribed in the hybrid cells, and the U1 RNAs of both species were incorporated into specific ribonucleoprotein particles.  相似文献   

16.
Preparations of chicken, rat and human nuclear 5S RNA contain two sets of molecules. The set with the lowest electrophoretic mobility (5Sa) contains RNAs identical or closely related to ribosomal 5S RNA from the corresponding animal species. In HeLa cells and rat brain, we only detected an RNA identical to the ribosomal 5S RNA. In hen brain and liver, we found other species differing by a limited number of substitutions. The results suggest that mutated 5S genes may be expressed differently according to the cell type. The set with the highest mobility corresponds to U5 RNA. In both rat brain and HeLa cells, U5 RNA was found to be composed of 4 and 5 different molecules respectively (U5A, U5B1-4) differing by a small number of substitutions or insertions. In hen brain, no U5B was detected but U5A' differing from U5A by the absence of the 3'-terminal adenosine. All the U5 RNAs contain the same set of modified nucleotides. They also have the same secondary structure which consists of two hairpins joined together by a 17 nucleotide long single-stranded region. The 3' half of the molecule has a compact conformation. Together, the results suggest that U5 RNAs are transcribed from a multigene family and that mutated genes may be expressed as far as secondary structure is conserved. The conformation of U5 RNA is likely to be related to its function and it is of interest to mention that several similarities of structure are found between U5 and U1A RNA.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) encodes a regulatory protein, Rev, which is required for cytoplasmic expression of incompletely spliced viral mRNA. Rev binds to a cis-acting Rev-responsive element (RRE) located within the env region of HIV-1. It has previously been shown that a 17-amino-acid peptide, corresponding to the basic domain of Rev, specifically inhibited in vitro the splicing of mRNAs containing the RRE. In this reaction, the peptide acts after an ATP-dependent step in the spliceosome assembly resulting in an accumulation of a 45-50S splicing-deficient complex. Characterization of this complex revealed that the basic domain of Rev does not interfere with U1 small nuclear ribonucleoprotein binding but blocks the entry of U4, U5, and U6 small nuclear RNAs into the spliceosome. Binding of U2 small nuclear ribonucleoprotein was partially inhibited. The critical nature of the oligomeric structure of RRE has been investigated both in vitro and in vivo. Reporter genes that contained one, three, or six repeated-monomer high-affinity Rev binding sites (IIB) within an intron yielded a correlation among the oligomeric state of bound Rev; inhibition of splicing; ability to block the assembly of U4, U5, and U6 small nuclear RNAs in the spliceosome in vitro; and level of Rev response in vivo.  相似文献   

18.
19.
The 5' ends of U1, U2, U3, U4, and U5 small nuclear RNAs (snRNA) are capped by a structure which contains N2,N2-7-trimethylguanosine (m2,2,7 G). m2,2,7 G was used as hapten to raise antibodies in rabbits, and these antibodies were linked to Sepharose. When deproteinized RNA was passed through this antibody column, these snRNA species were retained by the column. Conversely, 4 S, 5 S, 5.8 S, U6, and 7 S RNA, whose 5' termini do not contain m2,2,7 G, were not recognized. After a nuclear extract was loaded on the column, U1 RNA and some U2 RNA were retained. Therefore, the 5' ends of at least U1 RNA are accessible when this RNA species is in small nuclear ribonucleoprotein particle (snRNP) form. This is of interest, since it has been proposed that the 5' terminus sequence of U1 RNA may hybridize with splice junctions in heterogeneous nuclear ribonucleoprotein particles (hnRNP) during mRNA splicing. The retention of m2,2,7 G-containing RNA species by these antibodies is not due to association of snRNAs or snRNPs with heterogeneous nuclear RNA (hnRNA) or hnRNP (and antibody recognition of 7-monomethylguanosine residues in hnRNA), since the reaction still occurs after removal of hnRNA or hnRNP by sucrose gradient centrifugation.  相似文献   

20.
L Goldstein  C Ko 《Cell》1974,2(4):259-269
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号