首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodontal diseases, such as gingivitis and periodontitis, are caused by a mixed infection by several types of bacteria in the dental plaque, causing a chronic inflammation of the gingival mucosa. Inflammatory processes in conjunction with immune responses to bacterial attacks are generally protective. In profound periodontitis, however, hyperresponsiveness and hypersensitivity of the immune system are counterproductive because of the destruction of the affected periodontal connective tissues. The intercellular adhesion molecule type 1 (ICAM-1) plays a key role in the onset and manifestation of inflammatory responses. Thus, inhibition of ICAM-1 expression could be of therapeutic relevance for the treatment of destructive periodontitis. Here, antisense oligonucleotides (AS-ON) directed against ICAM-1 suppress protein expression and mRNA levels specifically and effectively in primary human endothelial cells of different tissue origin. Moreover, downregulation of ICAM-1 expression is also observed in AS-ON-transfected inflamed gingival mucosal tissue of patients with periodontal diseases. This work strongly suggests exploiting the local topical application of ICAM-1-directed AS-ON as a therapeutic tool against inflammatory processes of the human gingiva.  相似文献   

2.
Coenzyme Q (CoQ(10)) is a component of the mitochondrial electron transport chain and also a constituent of various cellular membranes. It acts as an important in vivo antioxidant, but is also a primary source of O(2)(-*)/H(2)O(2) generation in cells. CoQ has been widely advocated to be a beneficial dietary adjuvant. However, it remains controversial whether oral administration of CoQ can significantly enhance its tissue levels and/or can modulate the level of oxidative stress in vivo. The objective of this study was to determine the effect of dietary CoQ supplementation on its content in various tissues and their mitochondria, and the resultant effect on the in vivo level of oxidative stress. Rats were administered CoQ(10) (150 mg/kg/d) in their diets for 4 and 13 weeks; thereafter, the amounts of CoQ(10) and CoQ(9) were determined by HPLC in the plasma, homogenates of the liver, kidney, heart, skeletal muscle, brain, and mitochondria of these tissues. Administration of CoQ(10) increased plasma and mitochondria levels of CoQ(10) as well as its predominant homologue CoQ(9). Generally, the magnitude of the increases was greater after 13 weeks than 4 weeks. The level of antioxidative defense enzymes in liver and skeletal muscle homogenates and the rate of hydrogen peroxide generation in heart, brain, and skeletal muscle mitochondria were not affected by CoQ supplementation. However, a reductive shift in plasma aminothiol status and a decrease in skeletal muscle mitochondrial protein carbonyls were apparent after 13 weeks of supplementation. Thus, CoQ supplementation resulted in an elevation of CoQ homologues in tissues and their mitochondria, a selective decrease in protein oxidative damage, and an increase in antioxidative potential in the rat.  相似文献   

3.
An amplifying role for oral epithelial cells (ECs) in Epstein-Barr Virus (EBV) infection has been postulated to explain oral viral shedding. However, while lytic or latent EBV infections of oro/nasopharyngeal ECs are commonly detected under pathological conditions, detection of EBV-infected ECs in healthy conditions is very rare. In this study, a simple non-surgical tissue sampling procedure was used to investigate EBV infection in the periodontal epithelium that surrounds and attaches teeth to the gingiva. Surprisingly, we observed that the gingival ECs of the periodontium (pECs) are commonly infected with EBV and may serve as an important oral reservoir of latently EBV-infected cells. We also found that the basal level of epithelial EBV-infection is significantly increased in chronic periodontitis, a common inflammatory disease that undermines the integrity of tooth-supporting tissues. Moreover, the level of EBV infection was found to correlate with disease severity. In inflamed tissues, EBV-infected pECs appear to be prone to apoptosis and to produce larger amounts of CCL20, a pivotal inflammatory chemokine that controls tissue infiltration by immune cells. Our discovery that the periodontal epithelium is a major site of latent EBV infection sheds a new light on EBV persistence in healthy carriers and on the role of this ubiquitous virus in periodontitis. Moreover, the identification of this easily accessible site of latent infection may encourage new approaches to investigate and monitor other EBV-associated disorders.  相似文献   

4.
The purpose of this in situ study is to quantify the inflammatory cell subsets and the area fraction (AA%) occupied by collagen fibers in human healthy and diseased (four different stages) gingival connective tissue in order to establish a possible correlation between periodontal disease resulting in collagen breakdown and specific inflammatory cell subsets.Paraffin gingival tissue sections from eight healthy controls (group 0), 10 patients with gingivitis (group 1), 10 patients with moderate periodontitis (group 2) and 10 patients with severe periodontitis (group 3) were immunohistochemically investigated using antibodies against CD-45+, CD-3+, CD-8+, CD-20+, CD-68+, and EMA+ (plasma cells).The AA% occupied by gingival collagen fibers significantly decreased from 54.12% in group (0) to 38.58% in group (1), to 31.87% in group (2), and to 25.46% in group (3). In progressive lesions of periodontal disease, CD-3+ and CD-8+ cell numbers were increased in early stages within the connective tissue, while CD-20+ cell numbers were increased only in late stages. On the other hand, EMA+, CD-68+ and CD-45+ cell numbers were progressively increased from group (0) to group (3). We demonstrated that CD-68+ monocyte/macrophages, CD-45+ leukocyte common antigen and notably EMA+ plasma cells are pertinently correlated with the severity of periodontal disease and related collagen breakdown.  相似文献   

5.
Periodontal disease constitutes the most frequent chronic diseases in human dentition. Bacterial plaque is the main etiologic agent, although it is the host immune response that causes periodontal tissue destruction. Diabetes is considered an important risk factor, not only for the onset but also for progression of the disease. The aim of this study was to analyze structural changes in the rat gingival epithelium and connective tissue in response to the experimental periodontal disease induced by the ligature technique, under the influence of diabetes. The results showed that experimental periodontal disease is characterized by marked inflammation, affecting both the epithelial and connective tissues, causing degeneration of the dermal papilla, increase in the number of inflammatory cells, destruction of reticulin fibers, and accumulation of dense collagen fibers (fibrosis). These changes were worsened by diabetes, apparently by hampering the inflammatory response and affecting tissue repair of the affected tissues.  相似文献   

6.
S100A2 level changes are related to human periodontitis   总被引:1,自引:0,他引:1  
Periodontitis is an inflammatory disease, which, when severe, can result in tooth loss, that affects the quality of life. S100A2 was previously identified as a component of gingival crevicular fluid (GCF) via proteome analysis, but it has not been investigated whether S100A2 plays a role in periodontitis. In this study, we analyzed mRNA expression of S100A2 in gingival tissues from normal and classified periodontal disease patients and compared it to that of S100A8 and S100A9. Quantitative real time-PCR revealed that the mRNA expression levels of S100A2, S100A8, and S100A9 were significantly upregulated in gingival tissues with gingivitis, moderate periodontitis, and severe periodontitis compared to normal tissues. In addition, S100A2 proteins in GCF and the conditioned media of lipopolysaccharide (LPS)-treated Jurkat cells were confirmed by ELISA. S100A2 protein levels were significantly higher in GCF in gingivitis and moderate periodontitis groups than in normal groups. S100A2 mRNA expression and protein secretion were also increased by LPS stimulation. Based on the up-regulation of S100A2 in LPS-stimulated immune cells, gingival tissues and GCF from periodontal disease groups, we conclude that S100A2 is a functional component in the immune response during periodontitis and may serve as a potential biomarker for periodontitis.  相似文献   

7.
Y J Lo  C M Liu  M Y Wong  L T Hou  W K Chang 《Cytokine》1999,11(8):626-633
Interleukin 1beta (IL-1beta) is a cytokine with a wide range of biological activities. It is produced by various cell types including macrophages, fibroblasts, and neutrophils. The inflammatory responses mediated by IL-1beta play an important role in periodontal tissue destruction. The purposes of this study were: (1) to determine the location of IL-1beta in inflamed human gingival tissues by the immunofluorescence method; and (2) to correlate this location to the concomitant presence of macrophage or neutrophils by immunohistochemistry. Five patients with moderate to advanced adult periodontitis receiving periodontal phase I therapy were included in this study. One month after phase I therapy, 15 sites with a probing pocket depth >/=5 mm and gingivitis index >/=1 were arranged for modified Widman flap operation. Another three sites with a probing pocket depth 相似文献   

8.
The properties of coenzymes Q (CoQ9 and CoQ10) are closely linked to their redox state (CoQox/total CoQ) x 100. In this work, CoQ redox state was biologically validated by high performance liquid chromatography-electrochemical measurement after modulation of mitochondrial electron flow of cultured cells by molecules increasing (rotenone, carbonyl cyanide chlorophenylhydrazone) or decreasing (antimycin) CoQ oxidation. The tissue specificity of CoQ redox state and content were investigated in control and hypoxic rats. In control rats, there was a strong negative linear regression between tissular CoQ redox state and CoQ content. Hypoxia increased CoQ9 redox state and decreased CoQ9 content in a negative linear relationship in the different tissues, except the heart and lung. This result demonstrates that, under conditions of mitochondrial impairment, CoQ redox control is tissue-specific.  相似文献   

9.
The present work was set to study how CoQ concentrations affected steady-state levels of superoxide in a cellular model of partial CoQ(10) deficiency in cultured human myeloid leukemia HL-60 cells. Culturing HL-60 cells in the presence of p-aminobenzoate, a competitive inhibitor of polyprenyl-4-hydroxybenzoate transferase (Coq2p), produced a significant decrease of CoQ(10) levels without affecting cell viability. Concomitant decreases in CoQ-dependent electron transport activity and mitochondrial membrane potential were observed under these conditions. Intracellular superoxide was significantly elevated in cells treated with p-aminobenzoate, both under serum-containing and serum-free conditions, and this effect was reversed by exogenous CoQ(10). A slight increase of superoxide was also observed in CoQ(10)-supplemented cells in the absence of serum. Our results support a requirement for CoQ(10) to control superoxide levels in HL-60 cells. The importance of extramitochondrial sources of superoxide in cells with impaired CoQ(10) biosynthesis is discussed.  相似文献   

10.
ABSTRACT

We investigated the effectiveness of crocin for preventing oxidative damage in experimentally produced periodontitis. We used three groups of 10 female Wistar rats divided into: control (C); experimental periodontitis (EP), experimental periodontitis + crocin (Cr-EP). Malondialdehyde (MDA), glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS) and superoxide dismutase (SOD) and catalase (CAT) enzyme activities were measured. We examined histopathology and inflammatory cell infiltration in gingiva and periodontal ligament. MDA and TOS levels, and SOD and CAT activities increased significantly in rats with induced periodontitis compared to the control group, while GSH and TAS levels were decreased significantly compared to the control group. Histopathologic examination revealed inflammatory cell infiltration in gingiva epithelium and subepithelial connective tissue in the EP group. Histological damage was reduced significantly after crocin treatment compared to the EP group. Crocin supplementation may help reduce oxidative damage to periodontal tissues.  相似文献   

11.
The concentration of Vitamin E (vit E) and ubiquinone (CoQ10), which together with squalene (SQ), play a key role against external oxidative insult, has been shown to decrease significantly during ageing. The aim of the present study is to inquire the effect of the combined use of topical bio-cosmetics containing natural active principles (including sebum-like lipid fractions, sebum and epidermal lipophilic and hydrophilic antioxidants), and oral antioxidant supplements on the antioxidant content of sebum and stratum corneum. We therefore treated the face and the back of 50 female volunteers aged 21-40, daily for two months, with a base cream containing 0.05% ubiquinone, 0.1% vit E, and 1% squalene. In addition 50 mg of CoQ10 + 50 mg of d-RRR-alpha-tocopheryl acetate + 50 microg of selenium were administered orally to half of the volunteers (Group A). Group B was represented by 25 volunteers who were treated only topically. Every 15 days during treatment the levels of CoQ10, vit E and SQ were verified in sebum, stratum corneum, and plasma. The daily topical application of the cream led to a significant increase, that peaked after 60 days, of the levels of CoQ10, d-RRR-alpha-tocopherol and SQ in the sebum (Group B), without significantly affecting the stratum corneum or plasma concentrations of the redox couple CoQ10H2/CoQ10 and vit E. The concomitant oral admistration of antioxidants produced in Group A a significant increase of the levels of CoQ10H2/CoQ10 and vit E both in plasma and stratum corneum after 15 and 30 days treatment respectively, compared to Group B. However the sebum levels of lipophilic antioxidants and SQ did not show a significant increase. After the treatments, the levels of CoQ10H2/CoQ10, vit E and SQ went back to basal levels within 6-8 days in sebum, 12-16 days in the stratum corneum, and 3-6 days in plasma. Therefore topical application of the antioxidants was able to increase their level in sebum, while the concomitant oral administration also affected the levels of vit E and CoQ10 in the stratum corneum.  相似文献   

12.
We wished to evaluate whether epigenetic modifiers have a beneficial effect on treating experimental periodontitis and mechanisms for regulating the cell fate of mesenchymal stem cells (MSCs) in inflammatory microenvironments. We isolated MSCs from healthy and inflamed gingival tissues to investigate whether trichostatin A (TSA) could improve osteogenic differentiation and resolve inflammation in vitro. The tissue regenerative potentials were evaluated when treated with a temperature-dependent, chitosan-scaffold-encapsulated TSA, in a rat model of periodontitis. After induction with the conditioned medium, TSA treatment increased the osteogenic differentiation potential of inflamed MSCs and healthy MSCs. In addition, interleukin-6 and interleukin-8 levels in supernatants were significantly decreased after TSA treatment. Moreover, TSA promoted osteogenic differentiation by inhibiting nuclear factor-κB (p65) DNA binding in MSCs. In rats with experimental periodontitis, 7 weeks after local injections of chitosan-scaffold-encapsulated TSA, histology and microcomputed tomography showed a significant increase in alveolar bone volume and less inflammatory infiltration compared with vehicle-treated rats. The concentrations of interferon-γ and interleukin-6 were significantly decreased in the gingival crevicular fluid after TSA treatment. This study demonstrated that TSA had anti-inflammatory properties and could promote periodontal tissue repair, which indicated that epigenetic modifiers hold promise as a potential therapeutic option for periodontal tissue repair.  相似文献   

13.
BackgroundAtherosclerosis is a chronic inflammatory disease of the vessel wall associated with oxidized low-density lipoprotein (oxLDL)-induced apoptosis of endothelial cells. Coenzyme Q10 (CoQ10), a potent antioxidant and a critical intermediate of the electron transport chain, has been reported to inhibit LDL oxidation and thus the progression of atherosclerosis. However, its molecular mechanisms on endothelial cells remain still unclarified.MethodsIn this study, primary human umbilical vein endothelial cell cultures treated with oxLDL were used to explore the protective effects of CoQ10.ResultsOur results showed that CoQ10 attenuated the oxLDL-induced generation of reactive oxygen species and improved the antioxidant capacity. CoQ10 also attenuated the oxLDL-mediated down-regulation of endothelial nitric oxide synthase (eNOS) and up-regulation of inducible nitric oxide synthase (iNOS). In addition, CoQ10 suppressed oxLDL-activated NF-κB and downstream inflammatory mediators, including expression of adhesion molecules, release of proinflammatory cytokines and the adherence of monocytic THP-1 cells. Moreover, CoQ10 attenuated oxLDL-altered proapoptotic responses. The inhibitor of eNOS (l-NIO 10 μM) and iNOS (1400W 10 μM) as well as NO enhancer (SNP 10 μM) were used to clean up the mechanism.ConclusionThese results provide new insight into the possible molecular mechanisms by which CoQ10 protects against atherogenesis by NO-related pathways.  相似文献   

14.
Occurrence of oxidative stress in white adipose tissues contributes to its dysfunction and the development of obesity-related metabolic complications. Coenzyme Q10 (CoQ10) is the single lipophilic antioxidant synthesized in humans and is essential for electron transport during mitochondrial respiration. To understand the role of CoQ10 in adipose tissue physiology and dysfunction, the abundance of the oxidized and reduced (CoQ10red) isoforms of the CoQ10 were quantified in subcutaneous and omental adipose tissues of women covering the full range of BMI (from 21.5 to 53.2 kg/m2). Lean women displayed regional variations of CoQ10 redox state between the omental and subcutaneous depot, despite similar total content. Obese women had reduced CoQ10red concentrations in the omental depot, leading to increased CoQ10 redox state and higher levels of lipid hydroperoxide. Women with low omental CoQ10 content had greater visceral and subcutaneous adiposity, increased omental adipocyte diameter, and higher circulating interleukin-6 and C-reactive protein levels and were more insulin resistant. The associations between abdominal obesity-related cardiometabolic risk factors and CoQ10 content in the omental depot were abolished after adjustment for omental adipocyte diameter. This study shows that hypertrophic remodeling of visceral fat closely relates to depletion of CoQ10, lipid peroxidation, and inflammation.  相似文献   

15.
Chemokines are said to be small peptides that are chemoattractants for leukocyte subpopulations within local inflammation sites. Gingival inflammation is characterized by infiltration of inflammatory mononuclear cells. The point of this study was to examine the presence or absence of chemokine-positive cells and chemokine receptor-positive cells by means of immunohistochemical methods in samples of gingival tissues obtained from patients with marginal periodontitis. Macrophage chemotactic protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, (IFN-gamma)-inducible protein-10 (IP-10) and RANTES-producing cells were found to be present in inflamed human gingival tissues. In addition, CCR5- and CXCR3-positive cells were present. In contrast, no factor expression was observed in periodontally healthy gingival tissue. Our findings suggest that these chemokines may be responsible for modulating the process of infectious disease such as marginal periodontitis.  相似文献   

16.
It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10) is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group). In the neomycin group, utricles were cultured with neomycin (1 mM) to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30–0.3 µM). Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.  相似文献   

17.
Periodontal disease in ancient populations   总被引:2,自引:0,他引:2  
Recent clinical and anthropological findings indicate that the conventional concept of the pathogenesis of periodontal disease requires review. The periodontal lesion has been defined as a generalised horizontal loss of crestal bone resulting from host immune and inflammatory responses triggered by the action of commensal bacteria, and the extension of gingivitis into the deeper periodontium to become periodontitis has been assumed to occur slowly but steadily over many years. Anthropological and clinical investigations reveal that the widespread loss of crestal tissue is relatively unusual and that lesions of the alveolus are commonly localised and severe. Longitudinal studies have shown that the disease progresses in bursts and is stable in both the gingivitis and periodontal modes in between the burst activity. The findings of the present study demonstrate that generalized horizontal periodontitis has been unusual and has not been responsible for tooth loss. Other factors responsible for deficient alveolar margins in dry bones have been overlooked in most studies, leading to overassessment of the incidence of periodontal disease in postmortem materials; the same assumptions have led to overassessment of periodontal disease in clinical studies and practice.  相似文献   

18.
The neuropathological and clinical symptoms of Huntington's disease (HD) can be simulated in animal model with systemic administration of 3-nitropropionic acid (3-NP). Energy defects in HD could be ameliorated by administration of coenzyme Q(10) (CoQ(10)), creatine, or nicotinamid. We studied the activity of creatine kinase (CK) and the function of mitochondrial respiratory chain in the brain of aged rats administered with 3-NP with and without previous application of antioxidants CoQ(10)+vitamin E. We used dynamic and steady-state methods of in vivo phosphorus magnetic resonance spectroscopy ((31)P MRS) for determination of the pseudo-first order rate constant (k(for)) of the forward CK reaction, the phosphocreatine (PCr) to adenosinetriphosphate (ATP) ratio, intracellular pH(i) and Mg(i)(2+) content in the brain. The respiratory chain function of isolated mitochondria was assessed polarographically; the concentration of CoQ(10) and alpha-tocopherol by HPLC. We found significant elevation of k(for) in brains of 3-NP rats, reflecting increased rate of CK reaction in cytosol. The function of respiratory chain in the presence of succinate was severely diminished. The activity of cytochromeoxidase and mitochondrial concentration of CoQ(10) was unaltered; tissue content of CoQ(10) was decreased in 3-NP rats. Antioxidants CoQ(10)+vitamin E prevented increase of k(for) and the decrease of CoQ(10) content in brain tissue, but were ineffective to prevent the decline of respiratory chain function. We suppose that increased activity of CK system could be compensatory to decreased mitochondrial ATP production, and CoQ(10)+vitamin E could prevent the increase of k(for) after 3-NP treatment likely by activity of CoQ(10) outside the mitochondria. Results of our experiments contributed to elucidation of mechanism of beneficial effect of CoQ(10) administration in HD and showed that the rate constant of CK is a sensitive indicator of brain energy disorder reflecting therapeutic effect of drugs that could be used as a new in vivo biomarker of neurodegenerative diseases.  相似文献   

19.
Primary coenzyme Q10 deficiency and the brain   总被引:3,自引:0,他引:3  
Our findings in 19 new patients with cerebellar ataxia establish the existence of an ataxic syndrome due to primary CoQ10 deficiency and responsive to CoQ10 therapy. As all patients presented cerebellar ataxia and cerebellar atrophy, this suggests a selective vulnerability of the cerebellum to CoQ10 deficiency. We investigated the regional distribution of coenzyme Q10 in the brain of adult rats and in the brain of one human subject. We also evaluated the levels of coenzyme Q9 (CoQ9) and CoQ10 in different brain regions and in visceral tissues of rats before and after oral administration of CoQ10. Our results show that in rats, amongst the seven brain regions studied, cerebellum contains the lowest level of CoQ. However, the relative proportion of CoQ10 was the same (about 30% of total CoQ) in all regions studied. The level of CoQ10 is much higher in brain than in blood or visceral tissue, such as liver, heart, or kidney. Daily oral administration of CoQ10 led to substantial increases of CoQ10 concentrations only in blood and liver. Of the four regions of one human brain studied, cerebellum again had the lowest CoQ10y concentration.  相似文献   

20.
Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号