首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
BACKGROUND: Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of tyrosine and phenylalanine catabolism, the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate, to yield fumarate and acetoacetate. FAH has no known sequence homologs and functions by an unknown mechanism. Carbon-carbon hydrolysis reactions are essential for the human metabolism of aromatic amino acids. FAH deficiency causes the fatal metabolic disease hereditary tyrosinemia type I. Carbon-carbon bond hydrolysis is also important in the microbial metabolism of aromatic compounds as part of the global carbon cycle. RESULTS: The FAH crystal structure has been determined by rapid, automated analysis of multiwavelength anomalous diffraction data. The FAH polypeptide folds into a 120-residue N-terminal domain and a 300-residue C-terminal domain. The C-terminal domain defines an unusual beta-strand topology and a novel 'mixed beta-sandwich roll' structure. The structure of FAH complexed with its physiological products was also determined. This structure reveals fumarate binding near the entrance to the active site and acetoacetate binding to an octahedrally coordinated calcium ion located in close proximity to a Glu-His dyad. CONCLUSIONS: FAH represents the first structure of a hydrolase that acts specifically on carbon-carbon bonds. FAH also defines a new class of metalloenzymes characterized by a unique alpha/beta fold. A mechanism involving a Glu-His-water catalytic triad is suggested based on structural observations, sequence conservation and mutational analysis. The histidine imidazole group is proposed to function as a general base. The Ca(2+) is proposed to function in binding substrate, activating the nucleophile and stabilizing a carbanion leaving group. An oxyanion hole formed from sidechains is proposed to stabilize a tetrahedral alkoxide transition state. The proton transferred to the carbanion leaving group is proposed to originate from a lysine sidechain. The results also reveal the molecular basis for mutations causing the hereditary tyrosinemia type 1.  相似文献   

7.
8.
Inaba K  Murakami S  Suzuki M  Nakagawa A  Yamashita E  Okada K  Ito K 《Cell》2006,127(4):789-801
Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space. DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase. To gain insight into disulfide bond formation, we determined the crystal structure of the DsbB-DsbA complex at 3.7 A resolution. The structure of DsbB revealed four transmembrane helices and one short horizontal helix juxtaposed with Cys130 in the mobile periplasmic loop. Whereas DsbB in the resting state contains a Cys104-Cys130 disulfide, Cys104 in the binary complex is engaged in the intermolecular disulfide bond and captured by the hydrophobic groove of DsbA, resulting in separation from Cys130. This cysteine relocation prevents the backward resolution of the complex and allows Cys130 to approach and activate the disulfide-generating reaction center composed of Cys41, Cys44, Arg48, and ubiquinone. We propose that DsbB is converted by its specific substrate, DsbA, to a superoxidizing enzyme, capable of oxidizing this extremely oxidizing oxidase.  相似文献   

9.
10.
K J Edwards  T C Jenkins  S Neidle 《Biochemistry》1992,31(31):7104-7109
The crystal structure of the complex formed between the dodecanucleotide d(CGCGAATTCGCG)2 and the drug pentamidine, which is active against the Pneumocystis carinii pathogen in AIDS patients, has been determined to a resolution of 2.1 A and an R-factor of 19.4%. Analysis of the structure has shown the drug to be bound in the 5'-AATT minor groove region of the duplex, with the amidinium groups H-bonded to adenine N3 atoms in an interstrand manner. The drug molecule adopts an extended conformation, and the immediate binding site spans four base pairs. Structural details of the drug-DNA interactions are discussed, and comparison is made with the dodecamer complex of the structurally similar berenil ligand.  相似文献   

11.
EndoG is a ubiquitous nuclease that is translocated into the nucleus during apoptosis to participate in DNA degradation. The enzyme cleaves double- and single-stranded DNA and RNA. Related nucleases are found in eukaryotes and prokaryotes, which have evolved sophisticated mechanisms for genome protection against self-antagonizing nuclease activity. Common mechanisms of inhibition are secretion, sequestration into a separate cellular compartment or by binding to protein inhibitors. Although EndoG is silenced by compartmentalization into the mitochondrial intermembrane space, a nucleus-localized protein inhibitor protects cellular polynucleotides from degradation by stray EndoG under non-apoptotic conditions in Drosophila. Here, we report the first three-dimensional structure of EndoG in complex with its inhibitor EndoGI. Although the mechanism of inhibition is reminiscent of bacterial protein inhibitors, EndoGI has evolved independently from a generic protein-protein interaction module. EndoGI is a two-domain protein that binds the active sites of two monomers of EndoG, with EndoG being sandwiched between EndoGI. Since the amino acid sequences of eukaryotic EndoG homologues are highly conserved, this model is valid for eukaryotic dimeric EndoG in general. The structure indicates that the two active sites of EndoG occupy the most remote spatial position possible at the molecular surface and a concerted substrate processing is unlikely.  相似文献   

12.
13.
Crystal structure of a lysozyme-tetrasaccharide lactone complex   总被引:6,自引:0,他引:6  
The binding of a proposed transition-state analogue, the δ-lactone derived from tetra-N-acetylchitotetraose, to lysozyme in the crystal at pH 2.6 has been studied by X-ray diffraction techniques to a resolution of 2.5 Å. The tetrasaccharide lactone is bound in sites A, B, C, D with sugar residues located in sites A, B and C in similar positions to those observed previously in the complex with tri-N-acetylchitotriose. Analysis of the electron density map for site D, by direct model-building and with a computer model-building programme, indicates that the δ-lactone ring is in a conformation close to a sofa or a boat which brings the hydroxymethyl group C(6)O(6) axial. These studies provide support for the role of strain in the proposed mechanism of lysozyme catalysis. The orientation of the lactone group in site D is slightly different from that originally derived by hypothetical model-building.  相似文献   

14.
Crystal structure of a papain-E-64 complex   总被引:1,自引:0,他引:1  
E-64 [1-[N-[(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl] amino]-4-guanidinobutane] is an irreversible inhibitor of many cysteine proteases. A papain-E-64 complex was crystallized at pH 6.3 by using the hanging drop method. Three different crystal forms grew in 3-7 days; the form chosen for structure analysis has space group P212121, with a = 42.91(4) A, b = 102.02(6) A, c = 49.73(2) A, and Z = 4. Diffraction data were measured to 2.4-A resolution, giving 9367 unique reflections. The papain structure was solved by use of the molecular replacement method, and then the inhibitor was located from a difference electron density map and fitted with the aid of a PS330 computer graphics system. The structure of the complex was refined to R = 23.3%. Our analysis shows that a covalent link is formed between the sulfur of the active-site cysteine 25 and the C-2 atom of the inhibitor. Contrary to earlier predictions, the E-64 inhibitor clearly interacts with the S subsites on the enzyme rather than the S' subsites, and papain's histidine 159 imidazole group plays a binding rather than a catalytic role in the inactivation process.  相似文献   

15.
Several gamma-herpesviruses encode proteins related to the mammalian cyclins, regulatory subunits of cyclin-dependent kinases (cdks) essential for cell cycle progression. We report a 2.5 A crystal structure of a full-length oncogenic viral cyclin from gamma-herpesvirus 68 complexed with cdk2. The viral cyclin binds cdk2 with an orientation different from cyclin A and makes several novel interactions at the interface, yet it activates cdk2 by triggering conformational changes similar to cyclin A. Sequences within the viral cyclin N-terminus lock part of the cdk2 T-loop within the core of the complex. These sequences and others are conserved amongst the viral and cellular D-type cyclins, suggesting that this structure has wider implications for other cyclin-cdk complexes. The observed resistance of this viral cyclin-cdk complex to inhibition by the p27(KIP:) cdk inhibitor is explained by sequence and conformational variation in the cyclin rendering the p27(KIP:)-binding site on the cyclin subunit non-functional.  相似文献   

16.
17.
E-64, 1-(L-trans-epoxysuccinylleucylamino)-4-guanidinobutane, is a potent and highly selective irreversible inhibitor of cysteine proteases. The crystal structure of a complex of actinidin and E-64 has been determined at 1.86-A resolution by using the difference Fourier method and refined to an R-factor of 14.5%. The electron density map clearly shows that the C2 atom of the E-64 epoxide ring is covalently bonded to the S atom of the active-site cysteine 25. The charged carboxyl group of E-64 forms four H-bonds with the protein and thus may play an important role in favorably positioning the inhibitor molecule for nucleophilic attack by the active-site thiolate anion. The interaction features between E-64 and actinidin are very similar to those seen in the papain-E-64 complex; however, the amino-4-guanidinobutane group orients differently. The crystals of the actinidin-E-64 complex diffracted much better than the papain-E-64 complex, and consequently the present study provides more precise geometrical information on the binding of the inhibitor. Moreover, this study provides yet another confirmation that the binding of E-64 is at the S subsites and not at the S' subsites as has been previously proposed. The original actinidin structure has been revised using the new cDNA sequence information.  相似文献   

18.
Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses.  相似文献   

19.
Crystal structure of a beta-catenin/Tcf complex   总被引:17,自引:0,他引:17  
Graham TA  Weaver C  Mao F  Kimelman D  Xu W 《Cell》2000,103(6):885-896
The Wnt signaling pathway plays critical roles in embryonic development and tumorigenesis. Stimulation of the Wnt pathway results in the accumulation of a nuclear beta-catenin/Tcf complex, activating Wnt target genes. A crystal structure of beta-catenin bound to the beta-catenin binding domain of Tcf3 (Tcf3-CBD) has been determined. The Tcf3-CBD forms an elongated structure with three binding modules that runs antiparallel to beta-catenin along the positively charged groove formed by the armadillo repeats. Structure-based mutagenesis defines three sites in beta-catenin that are critical for binding the Tcf3-CBD and are differentially involved in binding APC, cadherin, and Axin. The structural and mutagenesis data reveal a potential target for molecular drug design studies.  相似文献   

20.
X Du  W Wang  R Kim  H Yakota  H Nguyen  S H Kim 《Biochemistry》2001,40(47):14166-14172
Bacterial pyrazinamidase (PZAase)/nicotinamidase converts pyrazinamide (PZA) to ammonia and pyrazinoic acid, which is active against Mycobacterium tuberculosis. Loss of PZAase activity is the major mechanism of pyrazinamide-resistance by M. tuberculosis. We have determined the crystal structure of the gene product of Pyrococcus horikoshii 999 (PH999), a PZAase, and its complex with zinc ion by X-ray crystallography. The overall fold of PH999 is similar to that of N-carbamoylsarcosine amidohydrolase (CSHase) of Arthrobacter sp. and YcaC of Escherichia coli, a protein with unknown physiological function. The active site of PH999 was identified by structural features that are also present in the active sites of CSHase and YcaC: a triad (D10, K94, and C133) and a cis-peptide (between V128 and A129). Surprisingly, a metal ion-binding site was revealed in the active site and subsequently confirmed by crystal structure of PH999 in complex with Zn(2+). The roles of the triad, cis-peptide, and metal ion in the catalysis are proposed. Because of extensive homology between PH999 and PZAase of M. tuberculosis (37% sequence identity), the structure of PH999 provides a structural basis for understanding PZA-resistance by M. tuberculosis harboring PZAase mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号