首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mutation Research Letters》1990,243(3):173-178
The clastogenic effect of the anticancer drug cis-diamminedichloroplatinum(II) (cisplatin) on meiotic prophase in primary spermatocytes and on spermatologonial stem cells of male (101/E1 × C3H/E1)F1 mice was studied. The intraperitoneal doses of cisplatin tested were 5.0, 7.5 and 10.0 mg/kg. Chromosomal aberrations were examined at diakinesis-metaphase 1 of meiosis 1–13 days after treatment, representing cells treated at diplotene, pachytene, zygotene, leptotene an preleptotene. Reciprocal translocations were evaluated 63–70 days after treatment, representing treated stem-cell spermatogonia.Cisplatin had a toxic effect in zygotene to preleptotene of meiosis, as indicated by the significant reduction in testicular weight. At diplotene, pachytene and zygotene no enhancement of aberrations was found. An increase in aberrant cells was observed during leptotene with preleptotene being the most sensitive stage. The dose-response relationship for aberrant cells was linear on day 13 after treatment. It is concluded that, like mitomycin C (Alder, 1976), cisplatin primarily caused aberrations during the premeiotic phase of DNA synthesis. No significant increase of translocation multivalents was found after treatment of stem-cell spermatogonia.  相似文献   

2.
Scanning electron microscopy of amphibian lampbrush chromosomes   总被引:4,自引:0,他引:4  
A protein having a molecular weight of 73,000 daltons has been purified from the nuclear membranes of preleptotene, leptotene, and zygotene cells. It has been named the leptotene protein (L-protein) because of its role in suppressing the replication of zygotene DNA sequences through leptotene until the initiation of zygotene DNA synthesis. The protein has been found to be highly specific in its inhibitory activity. S-phase replication in somatic nuclei and in microspore nuclei are unaffected by the protein. Only zygotene DNA sequences appear to be affected. L-protein binds specifically to zygotene DNA. The binding is limited to a relatively short DNA segment, probably no longer than 90 base pairs (bp). Chloroplast and mitochondrial DNA do not bind to the protein, but a low level of binding is displayed by DNA from several other eukaryotic species. The L-protein also has the capacity to nick the bound DNA in the presence of ATP. Nicking does not occur in the absence of binding. Using supercoiled plasmids with zygotene DNA inserts as substrates, the nicking has been found to be confined to a small region of the plasmid and to occur in only one of the strands. The L-protein is considered to be one of the principal factors responsible for the irreversible commitment of cells to meiosis at the end of the preleptotene S-phase. It is also proposed that its endonucleolytic activity plays a role in the initiation of synapsis.  相似文献   

3.
The clastogenic effect of the anticancer drug cis-diamminedichloroplatinum (II) (cisplatin) on meiotic prophase in primary spermatocytes and on spermatogonial stem cells of male (101/E1 x C3H/E1)F1 mice was studied. The intraperitoneal doses of cisplatin tested were 5.0, 7.5 and 10.0 mg/kg. Chromosomal aberrations were examined at diakinesis-metaphase 1 of meiosis 1-13 days after treatment, representing cells treated at diplotene, pachytene, zygotene, leptotene an preleptotene. Reciprocal translocations were evaluated 63-70 days after treatment, representing treated stem-cell spermatogonia. Cisplatin had a toxic effect in zygotene to preleptotene of meiosis, as indicated by the significant reduction in testicular weight. At diplotene, pachytene and zygotene no enhancement of aberrations was found. An increase in aberrant cells was observed during leptotene with preleptotene being the most sensitive stage. The dose-response relationship for aberrant cells was linear on day 13 after treatment. It is concluded that, like mitomycin C (Adler, 1976), cisplatin primarily caused aberrations during the premeiotic phase of DNA synthesis. No significant increase of translocation multivalents was found after treatment of stem-cell spermatogonia.  相似文献   

4.
Summary In situ hybridization has been performed in sections through ovaries ofAcipenser ruthenus andAcipenser güldenstädti in order to detect the rDNA sequences. Hybridization resulted in specific labelling of the caps of extrachromosomal DNA present in pachytene oocyte nuclei and of the chromatin granules distributed beneath the nuclear envelope in early diplotene nuclei. In the same sections, the nuclei of all ovarian cells in both species (oogonia, leptotene, and zygotene stage oocytes, follicular cells, connective tissue cells) showed a very low, but similar labelling.Amplification of genes for rRNA thus occurs at the pachytene stage in early oogenesis ofAcipenseridae. No rDNA amplification could be detected in the previous stages.  相似文献   

5.
It has been shown by means of double wavelength cytophotometry of DNA (Feulgen reaction) and histone (fast green, pH 8.2) inTriturus vulgaris spermatocytes that the doubling of DNA content in nuclei terminates at the end of preleptotene to beginning of leptotene whereas the doubling of histone content begun at premeiotic interphase is delayed and proceeds till the end of leptotene to beginning of zygotene. As a result preleptotene spermatocytes contain approximately 4C DNA and only 3C histone. Histone content in leptotene amounts to 93% of 4C, and in zygotene, pachytene and metaphase I both DNA and histone contents equal 4C. Thus, the temporal pattern of nucleo-histone doubling in meiotic chromosomes ofT. vulgaris differs from the synchronous DNA and histone doubling in mitotic chromosomes of all previously studied species. The delay of histone doubling inT. vulgaris meiocytes is less pronounced than in the previously studied insectsAcheta domestica andPyrrhocoris apterus where the histone content amounts to 3C in leptotene—zygotene and the equal histone/DNA ratio is restored only in pachytene.—Responsibilities for this phenomenon and its biolgoical sinnificance are discussed in connection with recent hypotheses concerning mechanisms of homologous chromosome pairing.  相似文献   

6.
From the silver staining behavior of various organelles in the nucleus we have divided meiotic prophase (leptotene to the diffuse stage) of the male Chinese hamster into five stages. Components within the nucleus, such as synaptonemal complex (SC), sex bivalent (SB), nucleolus organizer regions (NORs), chromatin and the dense bodies, showed a characteristic feature in each stage of meiotic prophase. The lampbrush chromosome stage was found to be followed by the diffuse stage. The chromatin around SC began to be organized at early pachytene and formed a brush-like structure at late pachytene. During early prophase stages a dramatic change in SB morphology occurred. Three types of morphology of SB were recognized: (1) the XY pair with long synapsis and fusiform or diffuse thickening of the unpaired portions (late zygotene and early pachytene), (2) desynapsed, thread-like axes seen at midpachytene, and (3) multistranded, branched, and anastomosed axes seen at late pachytene.Two types of the dense body were found during meiotic prophase; the double body in early stage (leptotene to early pachytene) and the single body in later stages (mid pachytene to diffuse stage). The small precursors of the double body existed at early leptotene but they increased in size and also changed the silver stainability during zygotene, becoming the characteristic double body consisted of one light body (L-body) and one dark body (D-body). These two bodies can also be recognized after Giemsa or acridine orange (AO) staining. The L-body fluoresced reddish orange after AO staining. The single body, which is probably formed by amalgamation of the D- and the L-bodies, showed a staining reaction similar to that of the D-body.Data from pancreatic lipase and protease treatments suggest that the D-body contained a lipoprotein.  相似文献   

7.
In order to provide cytological evidence of amplification, Podarcis sicula oocytes were studied by cytophotometry, thymidine incorporation and in situ DNA-DNA hybridization. Our results show that DNA replication is completed during the preleptotene stage, the leptotene oocytes having the typical 4C nuclear DNA content. Between the zygotene and the mid-pachytene stages further DNA synthesis occurs with consequent increase of the ribosomal nuclear DNA content. These results and the variations in nucleolar organization observed during differentiation give clear evidence of the existence of ribosomal gene amplification in Podarcis sicula oocytes.  相似文献   

8.
Y Hotta  S Tabata  L Stubbs  H Stern 《Cell》1985,40(4):785-793
In meiotic cells of Lilium, a group of single or low copy number DNA sequences that constitute about 0.1-0.2% of the genome do not replicate during the premeiotic S-phase but do so at zygotene in coordination with chromosome pairing. An appreciable fraction of these sequences has now been found to be transcribed into poly(A)+ RNA when chromosomes initiate the pairing process. This "zygRNA" has not been detected in nonmeiotic tissues. Even within the meiocytes, zygRNA is not detectable prior to leptotene or beyond midpachytene. S1 nuclease digestion of mouse spermatocyte nuclei selectively released zygDNA, which hybridizes with lily zygRNA. zygRNA has not been detected in mouse somatic tissues. The profile of zygRNA formation and disappearance in mouse spermatocytes is very similar to that of zygRNA in lily meiocytes.  相似文献   

9.
DNA synthesis in meiotic oocytes of the sterlet (A. ruthenus) has been studied during early prophase stages using H3-thymidine. The pattern of H3-thymidine incorporation is similar to that in oocytes of Amphibia and Osteichthyes. In the oogonia as well as in the leptotene and zygotene oocytes, the label is predominantly localized over chromosomes. An intensive incorporation of H3-thymidine into the material of the heterochromatic "cap" has been observed during pachytene. Thus, the main synthesis of extra DNA in the sterlet oocytes occurs during pachytene. No DNA in synthesized by the diplotene oocytes.  相似文献   

10.
Three spermatogenic cell populations isolated from prepuberal mice--type B spermatogonia, preleptotene spermatocytes, and leptotene/zygotene spermatocytes--were used to elicit distinct polyclonal antisera. Surface binding specificities were determined for purified IgGs by indirect immunofluorescence and rosette assays on live cells. Binding activities were assayed both before and after absorptions with a variety of somatic and spermatogenic cells. Each of these antisera binds to surface antigens that are present on germ cells throughout spermatogenesis and are not shared by splenocytes, thymocytes, and erythrocytes. Only the antiserum raised against leptotene and zygotene spermatocytes (ALZ) recognizes a stage-specific subset of surface determinants. After appropriate absorptions, ALZ binds to the surface of early pachytene spermatocytes and germ cells at subsequent stages of differentiation, including vas deferens spermatozoa. Antigens which react with this absorbed IgG are not detected on the surface of spermatogonia or meiotic cells prior to pachynema, including leptotene and zygotene spermatocytes. The observed binding specificities may result from the synthesis of one or more surface molecules during the early meiotic stages, followed by delayed insertion into the plasma membrane during the pachytene stage of meiotic prophase. Stage-specific antigens recognized by ALZ, including both protein and probably lipid, have been localized immunochemically on nitrocellulose blots from one-dimensional SDS gels. A dithiothreitol-sensitive constituent (Mr approximately 39,000) recognized by ALZ has been identified as the major protein determinant present in early meiotic cells but absent in 8-day-old seminiferous cell suspensions containing spermatogonia and Sertoli cells. This determinant is present in populations of preleptotene, leptotene/zygotene, and early pachytene spermatocytes isolated from 17-day-old animals, an observation consistent with the hypothesis of delayed insertion into the plasma membrane.  相似文献   

11.
We devised a sensitive method for the site-specific detection of rare meiotic DNA strand breaks in germ cell-enriched testicular cell populations from mice that possess or lack an active recombination hot spot at the H2-Ea gene. Using germ cells from adult animals, we found an excellent correlation between the frequency of DNA breaks in the 418-bp H2-Ea hot spot and crossover activity. The temporal appearance of DNA breaks was also studied in 7- to 18-day-old mice with an active hot spot during the first waves of spermatogenesis. The number of DNA breaks detected rose as leptotene and zygotene spermatocytes populate the testis with a peak at day 14 postpartum, when leptotene, zygotene, and early pachytene spermatocytes are the most common meiotic prophase I cell types. The number of DNA breaks drops precipitously 1 day later, when middle to late pachytene spermatocytes become the dominant subtype. The recombination-related breaks in the hot spot likely reflect SPO11-induced double-strand breaks and/or recombination intermediates containing free 3' hydroxyl groups.  相似文献   

12.
Denise Zickler 《Chromosoma》1977,61(4):289-316
Complete reconstruction of seven leptotene, six zygotene, three pachytene and three diplotene nuclei has permitted to follow the pairing process in the Ascomycete Sordaria macrospora. The seven bivalents in Sordaria can be identified by their length. The lateral components of the synaptonemal complexes (SC) are formed just after karyogamy but are discontinuous at early leptotene. Their ends are evenly distributed on the nuclear envelope. The homologous chromosomes alignment occurs at late leptotene before SC formation. The precise pairing starts when a distance of 200–300 nm is reached. Each bivalent has several independent central component initiation sites with preferentially pairing starting near the nuclear envelope. These sites are located in a constant position along the different bivalents in the 6 observed nuclei. The seven bivalents are not synchronous either in the process of alignment or in SC formation: the small chromosomes are paired first. At pachytene the SC is completed in each of the 7 bivalents. Six bivalents have one fixed and one randomly attached telomeres. The fixed end of the nucleolar organizer is the nucleolus anchored end. At diffuse stage and diplotene, only small stretches of the SC are preserved. The lateral components increase in length is approximately 34% between leptotene and pachytene. Their lengths remain constant during pachytene. From zygotene to diplotene the central components contain local thickenings (nodules). At late zygotene and pachytene each bivalent has 1 to 4 nodules and the location of at least one is constant. The total number of nodules remains constant from pachytene to diplotene and is equal to the mean total number of chiasmata. The observations provide additional insight into meiotic processes such as chromosome movements, initiation and development of the pairing sites during zygotene, the existence of fixed telomeres, the variations in SC length. The correspondence between nodules and chiasmata are discussed.  相似文献   

13.
Meiosis occupies only a very short period of the life cycle of higher plants but it is a crucial process ensuring the correct passage and maintenance of genetic information from parent to offspring. A clone (designated pAWJL3) has been isolated from a cDNA library generated from RNA prepared from young wheat florets at early meiosis. The clone was identified through cross-hybridisation to a cDNA clone from maize that, in turn, had been isolated by hybridisation to a Lilium meiosis-specific cDNA clone. The genes encoding the sequence represented in the wheat cDNA clone have been assigned to chromosomes in wheat. The clone, pAWJL3, represents a small family of genes with about 20 members located on the short arms of group 3 and 5 chromosomes. The chromosomal regions harbour genes known to control chromosomal pairing in wheat. DNA prepared from a deletion mutation affecting one of the major genes controlling pairing, Ph2 located on the short arm of 3DS, lacks the 3DS-specific members of the pAWJL3 family bands. The genes are shown to be expressed only after leptotene and predominantly at zygotene and pachytene of meiosis I. The deduced amino acid sequence encoded by the cDNA clone shows two domains, one with three leucine-rich, 24-amino acid repeats and the other with four leucine heptad repeats that resemble those found in basic leucine zipper proteins.  相似文献   

14.
A timing study of DNA amplification in Xenopus laevis oocytes   总被引:2,自引:0,他引:2  
The time course of meiotic amplification of nucleolar DNA in Xenopus laevis oocytes has been studied autoradiographically. We find that the process is first detectable in zygotene nuclei less than 7 days after the end of premeiotic S-phase. It is completed 3 1/2 weeks later, towards the end of pachytene. Premeiotic S-phase lasts for 1–2 weeks. We are not certain whether it is followed by a short G2 or whether leptotene commences immediately. Leptotene lasts for 5±2 days, zygotene for 7±2 days and pachytene for about 20 days before the oocyte gradually enters the extended diplotene stage. Various molecular mechanisms for amplification are discussed in the light of a 24±3 day amplification time. All are found to be potentially capable of amplifying sufficient nucleolar DNA in the time available.  相似文献   

15.
Active oxygen causes various problems including male infertility through the oxidation of DNA, proteins, and lipids. In the present study, we examined the immunohistochemical localization of molecules involved in oxidative stress including 8-hydroxy-2-deoxyguanosine (8-OHdG), superoxide dismutase (SOD), and protein disulfide isomerase (PDI) in mature and developing rat testes. In mature rat testes, 8-OHdG was detected in leptotene, zygotene, and early pachytene spermatocytes, while its expression was weak in late pachytene stage spermatocytes. On the other hand, SOD was detected in late pachytene spermatocytes but not in early pachytene and former spermatocytes, suggesting the efficient removal of active oxygen by SOD in late pachytene spermatocytes. In developing rat testes, 8-OHdG expression peaked at 4 weeks when spermatocytes started to differentiate to the late pachytene stage, while SOD started to be expressed at 4 weeks after birth. These findings suggest that the defense system against oxidative stress by SOD is developed in late pachytene stage spermatocytes at 4 weeks after birth. The present findings aid our understanding of the defensive mechanism against oxidative stress in developing and mature testes.  相似文献   

16.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

17.
18.
19.
The process of meiosis in Lilium falls into four physiological stages - prezygotene, zygotene, pachytene, and post-pachytene. Each of these stages has distinctive metabolic characteristics. Commitment to meiosis occurs during the prezygotene interval at about the time when S-phase replication is completed. The activities following commitment are essential to synapsis inasmuch as perturbations of cells during that interval have subsequent effects on synapsis and crossing over. Just before the initiation of synapsis, a distinctive lipoprotein complex appears in the nucleus. The complex most probably functions in the process of pairing. Zygotene is marked by the delayed replication of specific intercalary segments of chromosomal DNA (Z-DNA), the replication being a necessary condition for ongoing synapsis. The replication occurs in the lipoprotein complex in the presence of a reassociation protein (r-protein). Z-DNA segments would appear to have other meiotic functions inasmuch as the replicated segments remain unligated to the body of chromosomal DNA until the beginning of chromosome disjunction. The pachytene interval is marked by an activation of endonucleolytic activity. The enzyme produces single-stranded nicks in the DNA at specific loci. These loci consist of moderately repeated segments; about 100-200 base pairs long. Extracellular agents, such as radiation, cause random nicking regardless of the meiotic stage at which they are applied. Localized nicking and repair are thus unique features of meiosis. The temporal segregation of metabolic activities concerned with pairing and crossing over and their operation in special chromosome regions constitute the most prominent features of the biochemical events associated with meiosis.  相似文献   

20.
The regularity of the presence of plasmodesmata channels in the pollen mother cells of lily was studied by transmission and scanning electron microscopy. A few plasmodesmata channels can be recognized between the pollen mother cells at leptotene stage, which increase in number at zygotene and expand in width at synizesis and they lie in the range 0.5—1 μm. Massive chromatin substance are transferred from one pollen mother cell to another during synizesis. The pre-existing plasmodesmate channels close again at late pachytene. There are no channels from metaphase Ⅰ to tetrad stage. Finally, the relation between the presence of plasmodesmata channels, synizesis and cytomixis were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号