首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
转座子约占了人类基因组的45%,对基因组的结构与功能造成了重大的影响. 一部分转座子现在仍然具有活性,它们的转座能引发疾病. LINE-1(long interspersed element-1)是现今在人类基因组中发现的唯一具有活性并能自主转座的转座子,并能介导非自主转座的元件进行转座. 近年来LINE-1的研究有新的突破,本文简述了LINE-1的结构、转座机制及对基因组的影响,重点总结和分析宿主对LINE-1的限制机制. 由于LINE-1的生活周期与逆转录病毒有相似之处,也希望能够为宿主抗病毒的研究提供线索.  相似文献   

2.
The following text is an edited version of a recent interview with Sydney Brenner who has been at the forefront of many developments in molecular biology since the 1950s. It provides a participant’s view on current issues in the history and epistemology of molecular biology. The main issue raised by Brenner regards the relation of molecular biology to the new field of systems biology. Brenner defends the original programme of molecular biology—the molecular explanation of living processes—that in his view has yet to be completed. The programme of systems biology in contrast he views as either trivial or as not achievable since it purports to deal with inverse problems that are impossible to solve in complex living systems. Other issues covered in the conversation concern the impact of the human genome sequencing project, the commercial turn in molecular biology and the contested disciplinary status of the science.  相似文献   

3.
Apicomplexans are responsible for significant human and animal disease worldwide, including malaria and toxoplasmosis. Herein we summarize recent advances in gene expression analysis in these eukaryotic pathogens, especially with respect to their developmental biology, and discuss the impact this work may have on the development of new vaccines and chemotherapeutics.  相似文献   

4.
Functional genomics provides new opportunities to address issues of fundamental interest in evolutionary biology and suggests many new research directions that are ripe for evolutionary investigation. New types of data, and the ability to study biological processes from a whole genome perspective, are likely to have a profound impact on evolutionary biology and ecology. To illustrate, we discuss how genomewide gene expression studies can be used to reformulate questions about trade-offs and pleiotropy. We then touch on some of the new research opportunities that the application of functional genomics affords to evolutionary biologists. We end with some brief notes about how evolutionary biology and comparative approaches will probably have an impact on functional genomics.  相似文献   

5.
Vaccines are among the greatest tools for prevention and control of disease. They have eliminated smallpox from the planet, decreased morbidity and mortality for major infectious diseases like polio, measles, mumps, and rubella, significantly blunted the impact of the COVID-19 pandemic, and prevented viral induced cancers such as cervical cancer caused by human papillomavirus. Recent technological advances, in genomics, structural biology, and human immunology have transformed vaccine development, enabling new technologies such as mRNA vaccines to greatly accelerate development of new and improved vaccines. In this review, we briefly highlight the history of vaccine development, and provide examples of where advances in genomics and structural biology, paved the way for development of vaccines for bacterial and viral diseases.  相似文献   

6.
Understanding the global geographical distribution of extinction risk is a key challenge in conservation biology. It remains controversial, however, to what extent areas become threat hotspots simply because of high human impacts or due to predisposing ecological conditions. Limits to the taxonomic and geographical extent, resolution and quality of previously available data have precluded a full global assessment of the relative roles of these factors. Here, we use a new global database on the geographical distributions of birds on continents and continental islands to show that, after controlling for species richness, the best predictors of the global pattern of extinction risk are measures of human impact. Ecological gradients are of secondary importance at a global scale. The converse is true for individual biogeographic realms, within which variation in human impact is reduced and its influence on extinction risk globally is therefore underestimated. These results underline the importance of a global perspective on the mechanisms driving spatial patterns of extinction risk, and the key role of anthropogenic factors in driving the current extinction crisis.  相似文献   

7.
8.
Of mice and genome sequence   总被引:13,自引:0,他引:13  
Hamilton BA  Frankel WN 《Cell》2001,106(1):13-16
Availability of the mouse genome sequence will have a major impact on the study of vertebrate evolution, mammalian biology, and animal models of human disease. Resources to explore genome biology in mice will maximize the effect of this watershed event.  相似文献   

9.
Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.  相似文献   

10.
Studies of the model plant Arabidopsis thaliana may seem to have little impact on advances in medical research, yet a survey of the scientific literature shows that this is a misconception. Many discoveries with direct relevance to human health and disease have been elaborated using Arabidopsis, and several processes important to human biology are more easily studied in this versatile model plant.  相似文献   

11.
材料是人类赖以生存与发展的物质基础,科技和社会的进步都离不开材料技术的发展,未来先进材料的合成和制备必然朝着绿色可持续、低耗高产出、精细可调控、高效多功能的方向发展。以"基因调控·工程设计"为核心的合成生物学技术从分子、细胞层面极大地推动了生命科学的发展,也已经并继续为材料科学的发展注入新的思路和活力。本文将围绕合成生物学技术在材料科学中的应用,以基因回路设计为核心,概念应用为线索,重点介绍合成生物学技术在高分子生物材料和无机纳米材料领域的开发和生产,细胞展示和蛋白定向进化战略对分子材料的筛选和优化,"活体"功能材料、工程菌调节的人工光合系统功能材料体系以及基因回路在材料科学中的应用。  相似文献   

12.
The epigenetic “revolution” in science cuts across many disciplines, and it is now one of the fastest-growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism – or the belief that epigenetic mechanisms determine the expression of human traits and behaviors – matters for understandings of the influence of biology and society on population health.  相似文献   

13.
The Human Intestinal Microbiome: A New Frontier of Human Biology   总被引:2,自引:0,他引:2  
To analyze the vast number and variety of microorganisms inhabitingthe human intestine, emerging metagenomic technologies are extremelypowerful. The intestinal microbes are taxonomically complexand constitute an ecologically dynamic community (microbiota)that has long been believed to possess a strong impact on humanphysiology. Furthermore, they are heavily involved in the maturationand proliferation of human intestinal cells, helping to maintaintheir homeostasis and can be causative of various diseases,such as inflammatory bowel disease and obesity. A simplifiedanimal model system has provided the mechanistic basis for themolecular interactions that occur at the interface between suchmicrobes and host intestinal epithelia. Through metagenomicanalysis, it is now possible to comprehensively explore thegenetic nature of the intestinal microbiome, the mutually interactingsystem comprising the host cells and the residing microbialcommunity. The human microbiome project was recently launchedas an international collaborative research effort to furtherpromote this newly developing field and to pave the way to anew frontier of human biology, which will provide new strategiesfor the maintenance of human health.  相似文献   

14.
Concern continues to grow over the negative impact of endocrine disrupting chemicals on environmental and public health. The number of identified endocrine disrupting chemicals is increasing, but biological endpoints, experimental design, and approaches for examining and assessing the impact of these chemicals are still debated. Although some workers consider endocrine disruption an "emerging science," I argue here that it is equally, a "merging science" developing in the tradition of integrative biology. Understanding the impact of endocrine disruptors on humans and wildlife is an examination of "context dependent development" and one that Scott Gilbert predicted would require a "new synthesis" or a "revolution" in the biological sciences. Here, I use atrazine as an example to demonstrate the importance of an integrative approach in understanding endocrine disruptors.Atrazine is a potent endocrine disruptor that chemically castrates and feminizes amphibians and other wildlife. These effects are the result of the induction of aromatase, the enzyme that converts androgens to estrogens, and this mechanism has been confirmed in all vertebrate classes examined (fish, amphibians, reptiles, birds, and mammals, including humans). To truly assess the impact of atrazine on amphibians in the wild, diverse fields of study including endocrinology, developmental biology, molecular biology, cellular biology, ecology, and evolutionary biology need to be invoked. To understand fully the long-term impacts on the environment, meteorology, geology, hydrology, chemistry, statistics, mathematics and other disciplines well outside of the biological sciences are required.  相似文献   

15.
The effects of drug treatment of human hosts on a population of schistosome parasites depends on a variety of factors. Previous models have shown that multiple strains of drug-resistant parasites are likely to be favored as the treatment rate increases. However, such models have neglected to account for the complex nature of schistosome mating biology. To more accurately account for the biology of these parasites, a simple mating structure is included in a multi-strain schistosome model, with parasites under the influence of drug treatment of their human hosts. Parasites are assumed to pay a cost for drug resistance in terms of reduced reproduction and transmission. The dynamics of the parasite population are described by a system of homogeneous differential equations, and the existence and stability of the exponential solutions for this system are used to infer the impact of drug treatment on the maintenance of schistosome genetic diversity.  相似文献   

16.
Peroxisomes are remarkably dynamic and versatile organelles that are essential for human health and development. They respond to physiological changes in the cellular environment by adapting their morphology, number, enzyme content and metabolic functions accordingly. With the discovery of the first key peroxisomal morphology proteins, the investigation of peroxisomal shape, distribution and dynamics has become an exciting new field in cell biology and biomedical sciences because of its relation to organelle functionality and its impact on developmental and physiological processes. In this review, we summarize recent findings on peroxisome biology, dynamics and the modulation of peroxisome morphology, especially in mammals. Furthermore, we discuss the roles of peroxisome dynamics and morphology in cell pathology and present recent examples for alterations in peroxisome morphology under disease conditions. Besides defects in the peroxisomal morphology machinery, we also address peroxisome biogenesis disorders, alterations of peroxisome number during carcinogenesis and liver cirrhosis, and morphological alterations of peroxisomes during viral infection.  相似文献   

17.
The human small heat-shock protein αB-crystallin is an extremely difficult molecule to study, with its inherent structural dynamics posing unique challenges to all biophysical and structural biology techniques. Here we highlight how the polydispersity and quaternary dynamics of αB-crystallin are intrinsically inter-twined, and how this can impact on measurements of the oligomeric distribution. We show that, in spite of these difficulties, considerable understanding of the varied fluctuations αB-crystallin undergoes at equilibrium has emerged in the last few years. By reporting on data obtained from a variety of biophysical techniques, we demonstrate how the αB-crystallin solution ensemble is governed by molecular motions of varying amplitude and time-scales spanning several orders of magnitude. We describe how these diverse measurements are being used to construct an integrated view of the dynamical structure of αB-crystallin, and highlight areas that require further interrogation. With its study motivating the refinement of experimental techniques, and the development of new approaches to combine the hybrid datasets, we conclude that αB-crystallin continues to represent a paradigm for dynamical biology.  相似文献   

18.
The effects of drug treatment of human hosts upon a population of schistosome parasites depend upon a variety of factors. Previous models have shown that multiple strains of drug-resistant parasites are likely to be favored as the treatment rate increases. However, such models have neglected to account for the complex nature of schistosome mating biology. To more accurately account for the biology of these parasites, a simple mating structure is included in a multi-strain schistosome model, with parasites under the influence of drug treatment of their human hosts. Parasites are assumed to pay a cost for drug resistance in terms of reduced reproduction and transmission. The dynamics of the parasite population are described by a system of homogeneous differential equations, and the existence and stability of the exponential solutions for this system are used to infer the impact of drug treatment on the maintenance of schistosome genetic diversity.  相似文献   

19.
The nuclear receptor PPARgamma is a central regulator of adipose tissue development and an important modulator of gene expression in a number of specialized cell types including adipocytes, epithelial cells, and macrophages. PPARgamma signaling pathways impact both cellular and systemic lipid metabolism and have links to obesity, diabetes, and cardiovascular disease. The ability to activate this receptor with small molecule ligands has made PPARgamma an attractive target for intervention in human metabolic disease. As our understanding of PPARgamma biology has expanded, so has the therapeutic potential of PPARgamma ligands. Recent studies have provided insight into the paradoxical relationship between PPARgamma and metabolic disease and established new paradigms for the control of lipid metabolism. This review focuses on recent advances in PPARgamma biology in the areas of adipocyte differentiation, insulin resistance, and atherosclerosis.  相似文献   

20.
DeBerardinis RJ  Thompson CB 《Cell》2012,148(6):1132-1144
An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states--often genetically programmed--that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This Review discusses the broad impact of metabolism in cellular function and how modern concepts of metabolism can inform our understanding of common diseases like cancer and also considers the prospects of developing new metabolic approaches to disease treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号