首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pavlícek A  Jabbari K  Paces J  Paces V  Hejnar JV  Bernardi G 《Gene》2001,276(1-2):39-45
Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.  相似文献   

2.
The distribution of Alu and L1 retroelements in the human genome changes with their age. Active retroelements target AT-rich regions, but their frequency increases in GC- and gene-rich regions of the genome with increasing age of the insertions. Currently there is no consensus on the mechanism generating this pattern. In this paper we test the hypothesis that selection against deleterious deletions caused by ectopic recombination between repeats is the main cause of the inhomogeneous distribution of L1s and Alus, by means of a detailed analysis of the GC distribution of the repeats on the sex chromosomes. We show that (1) unlike on the autosomes and X chromosome, L1s do not accumulate on the Y chromosome in GC-rich regions, whereas Alus accumulate there to a minor extent; (2) on the Y chromosome Alu and L1 densities are positively correlated, unlike the negative correlation on other chromosomes; and (3) in gene-poor regions of chromosome 4 and X, the distribution of Alus and L1s does not shift toward GC-rich regions. In addition, we show that although local GC content of long L1 insertions is lower than average, their selective loss from recombining chromosomes is not the main cause of the enrichment of ancient L1s in GC-rich regions. The results support the hypothesis that ectopic recombination causes the shift of Alu and L1 distributions toward the gene-rich regions of the genome. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. Deborah Charlesworth  相似文献   

3.
The distribution in the human genome of the largest family of mobile elements, the Alu sequences, has been investigated for the past 30 years, and the vast majority of Alu sequences were shown to have the highest density in GC-rich isochores. Ten years ago, it was discovered, however, that the small "youngest" (most recently transposed) Alu families had a strikingly different distribution compared with the "old" families. This raised the question as to how this change took place in evolution. We solved what was considered to be a "mystery" by 1) revisiting our previous results on the integration and stability of retroviral sequences, and 2) assessing the densities of acceptor sites TTTT/AA in isochore families. We could conclude 1) that the open state of chromatin structure plays a crucial role in allowing not only the initial integration of retroviral sequences but also that of the youngest Alu sequences, and 2) that the distribution of old Alus can be explained as due to Alu sequences being unstable in the GC-poor isochores but stable in the compositionally matching GC-rich isochores, again in line with what happens in the case of retroviral sequences.  相似文献   

4.
Vertebrate genomes are mosaics of megabase-size DNA segments with a fairly homogeneous base composition, called isochores. They are divided into five families characterized by different guanine-cytosine (GC) levels and linked to several functional and structural properties. The increased availability of fully sequenced genomes allows the investigation of isochores in several species, assessing their level of conservation across vertebrate genomes. In this work, we characterized the isochores in Bos taurus using the ARS-UCD1.2 genome version. The comparison of our results with the well-studied human isochores and those of other mammals revealed a large conservation in isochore families, in number, average GC levels and gene density. Exceptions to the established increase in gene density with the increase in isochores (GC%) were observed for the following gene biotypes: tRNA, small nuclear RNA, small nucleolar RNA and pseudogenes that have their maximum number in H2 and H1 isochores. Subsequently, we assessed the ontology of all gene biotypes looking for functional classes that are statistically over- or under-represented in each isochore. Receptor activity and sensory perception pathways were significantly over-represented in L1 and L2 (GC-poor) isochores. This was also validated for the horse genome. Our analysis of housekeeping genes confirmed a preferential localization in GC-rich isochores, as reported in other species. Finally, we assessed the SNP distribution of a bovine high-density SNP chip across the isochores, finding a higher density in the GC-rich families, reflecting a potential bias in the chip, widely used for genetic selection and biodiversity studies.  相似文献   

5.
Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome.  相似文献   

6.
《Epigenetics》2013,8(6):652-663
DNA methylation of CpGs located in two types of repetitive elements—LINE1 (L1) and Alu—is used to assess “global” changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few studies have investigated whether repetitive element DNA methylation is associated with DNA methylation at other genomic regions, or the biological and technical factors that influence potential associations. Here, we assess L1 and Alu DNA methylation by Pyrosequencing of consensus sequences and using subsets of probes included in the Illumina Infinium HumanMethylation27 BeadChip array. We show that evolutionary age and assay method affect the assessment of repetitive element DNA methylation. Additionally, we compare Pyrosequencing results for repetitive elements to average DNA methylation of CpG islands, as assessed by array probes classified into strong, weak and non-islands. We demonstrate that each of these dispersed sequences exhibits different patterns of tissue-specific DNA methylation. Correlation of DNA methylation suggests an association between L1 and weak CpG island DNA methylation in some of the tissues examined. We caution, however, that L1, Alu and CpG island DNA methylation are distinct measures of dispersed DNA methylation and one should not be used in lieu of another. Analysis of DNA methylation data is complex and assays may be influenced by environment and pathology in different or complementary ways.  相似文献   

7.
Brohede J  Rand KN 《Human genetics》2006,119(4):457-458
Most Alu elements are considered to belong to the methylated fraction of the genome that has undergone CpG depletion, whereas CpG islands are characteristically unmethylated. By analysing the CpG content of >12,000 autosomal CpG island-Alu Sx pairs we wanted to study what happens when an Alu is situated close to a CpG island. We have found that many Alus located close to CpG islands have retained a high proportion of CpG sites, which is consistent with these Alus being unmethylated in the human germline.  相似文献   

8.
9.
Vanishing GC-rich isochores in mammalian genomes   总被引:25,自引:0,他引:25  
Duret L  Semon M  Piganeau G  Mouchiroud D  Galtier N 《Genetics》2002,162(4):1837-1847
To understand the origin and evolution of isochores-the peculiar spatial distribution of GC content within mammalian genomes-we analyzed the synonymous substitution pattern in coding sequences from closely related species in different mammalian orders. In primate and cetartiodactyls, GC-rich genes are undergoing a large excess of GC --> AT substitutions over AT --> GC substitutions: GC-rich isochores are slowly disappearing from the genome of these two mammalian orders. In rodents, our analyses suggest both a decrease in GC content of GC-rich isochores and an increase in GC-poor isochores, but more data will be necessary to assess the significance of this pattern. These observations question the conclusions of previous works that assumed that base composition was at equilibrium. Analysis of allele frequency in human polymorphism data, however, confirmed that in the GC-rich parts of the genome, GC alleles have a higher probability of fixation than AT alleles. This fixation bias appears not strong enough to overcome the large excess of GC --> AT mutations. Thus, whatever the evolutionary force (neutral or selective) at the origin of GC-rich isochores, this force is no longer effective in mammals. We propose a model based on the biased gene conversion hypothesis that accounts for the origin of GC-rich isochores in the ancestral amniote genome and for their decline in present-day mammals.  相似文献   

10.
LINE1 and Alu retroelements occupy approximately 17 and 13% of the human genome, respectively. They include the evolutionarily youngest element groups Ta-L1, AluYa5, and AluYb8, many inserts of which are polymorphic in the Homo sapiens population. Despite the data on the ability of L1 and Alu elements to cause various modifications of the genome, the effects of these retroelements on gene expression have yet not been studied. Using the RT PCR method, we analyzed the pre-mRNA (heterogeneous nuclear RNA) content of allele pairs of four genes in five human cell lines, heterozygous with respect to intronic inserts of L1 and Alu elements. We showed for the first time a tissue-specific decrease in the pre-mRNA content of the gene allele bearing L1 or Alu inserts relative to the other allele of the same gene lacking the retroelement.  相似文献   

11.
Expression patterns and gene distribution in the human genome   总被引:5,自引:0,他引:5  
D'Onofrio G 《Gene》2002,300(1-2):155-160
  相似文献   

12.

Background

The very recent availability of fully sequenced individual human genomes is a major revolution in biology which is certainly going to provide new insights into genetic diseases and genomic rearrangements.

Results

We mapped the insertions, deletions and SNPs (single nucleotide polymorphisms) that are present in Craig Venter''s genome, more precisely on chromosomes 17 to 22, and compared them with the human reference genome hg17. Our results show that insertions and deletions are almost absent in L1 and generally scarce in L2 isochore families (GC-poor L1+L2 isochores represent slightly over half of the human genome), whereas they increase in GC-rich isochores, largely paralleling the densities of genes, retroviral integrations and Alu sequences. The distributions of insertions/deletions are in striking contrast with those of SNPs which exhibit almost the same density across all isochore families with, however, a trend for lower concentrations in gene-rich regions.

Conclusions

Our study strongly suggests that the distribution of insertions/deletions is due to the structure of chromatin which is mostly open in gene-rich, GC-rich isochores, and largely closed in gene-poor, GC-poor isochores. The different distributions of insertions/deletions and SNPs are clearly related to the two different responsible mechanisms, namely recombination and point mutations.  相似文献   

13.
Spatial distribution and clustering of repetitive elements are extensively studied during the last years, as well as their colocalization with other genomic components. Here we investigate the large-scale features of Alu and LINE1 spatial arrangement in the human genome by studying the size distribution of interrepeat distances. In most cases, we have found power-law size distributions extending in several orders of magnitude. We have also studied the correlations of the extent of the power law (linear region in double-logarithmic scale) and of the corresponding exponent (slope) with other genomic properties. A model has been formulated to explain the formation of the observed power laws. According to the model, 2 kinds of events occur repetitively in evolutionary time: random insertion of several types of intruding sequences and occasional loss of repeats belonging to the initial population due to "elimination" events. This simple mechanism is shown to reproduce the observed power-law size distributions and is compatible with our present knowledge on the dynamics of repeat proliferation in the genome.  相似文献   

14.
15.
16.
L1-ORF2不同片段对报告基因表达产生不同影响   总被引:3,自引:1,他引:2  
段肖翠  靳霞  谢英  焦宁  刘静  王晓燕  吕占军 《遗传》2009,31(1):50-56
长散布重复序列-1(Line-1, L1)是重要的人类基因组成分, 完整的L1有6 kb, 在基因组中存在的L1多数是不完整序列, 有必要研究L1片段对基因表达的调控作用。PCR扩增L1第二读码框(L1-ORF2)不同位置的 280 bp片段, 共7段, 同向8串联按正、反方向分别插入pEGFP质粒GFP基因下游, 观察插入序列对GFP报告基因表达的影响。构建的质粒瞬时转染HeLa细胞, 经荧光显微镜和Northern检测, 不同片段对转录量和终止影响不同。7个片段正序对GFP报告基因的抑制均高于其反序, 在正序串联表达载体p280-1*8和p280-9*8的GFP基因转录量超过其他280正序插入片段, 在反序串联表达载体p280-1*8as和p280-9*8as的GFP基因转录量超过其他280反序片段。280-1*8、280-9*8、280-1*8as和280-9*8as属于转录终止性序列。Alu在基因组的多数区段与L1分布呈反比, Alu正、反序均对GFP表达有抑制作用, 但反序抑制作用高于正序, Alu正序属于转录延伸性序列。280 bp片段反序插入的所有质粒荧光阳性细胞均高于正序插入质粒。经碱基分析, L1-ORF2各段均存在A碱基含量多, T碱基含量少的现象, 这可能是其正、反序对基因表达影响不同的原因。  相似文献   

17.
We compared the exon/intron organization of vertebrate genes belonging to different isochore classes, as predicted by their GC content at third codon position. Two main features have emerged from the analysis of sequences published in GenBank: (1) genes coding for long proteins (i.e., 500 aa) are almost two times more frequent in GC-poor than in GC-rich isochores; (2) intervening sequences (=sum of introns) are on average three times longer in GC-poor than in GC-rich isochores. These patterns are observed among human, mouse, rat, cow, and even chicken genes and are therefore likely to be common to all warm-blooded vertebrates. Analysis of Xenopus sequences suggests that the same patterns exist in cold-blooded vertebrates. It could be argued that such results do not reflect the reality because sequence databases are not representative of entire genomes. However, analysis of biases in GenBank revealed that the observed discrepancies between GC-rich and GC-poor isochores are not artifactual, and are probably largely underestimated. We investigated the distribution of microsatellites and interspersed repeats in introns of human and mouse genes from different isochores. This analysis confirmed previous studies showing that Ll repeats are almost absent from GC-rich isochores. Microsatellites and SINES (Alu, B1, B2) are found at roughly equal frequencies in introns from all isochore classes. Globally, the presence of repeated sequences does not account for the increased intron length in GC-poor isochores. The relationships between gene structure and global genome organization and evolution are discussed.  相似文献   

18.
A compositional map of human chromosome 21.   总被引:9,自引:0,他引:9       下载免费PDF全文
K Gardiner  B Aissani    G Bernardi 《The EMBO journal》1990,9(6):1853-1858
GC-poor and GC-rich isochores, the long (greater than 300 kb) compositionally homogeneous DNA segments that form the genome of warm-blooded vertebrates, are located in G- and R-bands respectively of metaphase chromosomes. The precise correspondence between GC-rich isochores and R-band structure is still, however, an open problem, because GC-rich isochores are compositionally heterogeneous and only represent one-third of the genome, with the GC-richest family (which is by far the highest in gene concentration) corresponding to less than 5% of the genome. In order to clarify this issue and, more generally, to correlate DNA composition and chromosomal structure in an unequivocal way, we have developed a new approach, compositional mapping. This consists of assessing the base composition over 0.2-0.3 Mb (megabase) regions surrounding landmarks that were previously localized on the physical map. Compositional mapping was applied here to the long arm of human chromosome 21, using 53 probes that had already been used in physical mapping. The results obtained provide a direct demonstration that the DNA stretches of G-bands essentially correspond to GC-poor isochores, and that R-band DNA is characterized by a compositional heterogeneity that is much more striking than expected, in that it comprises isochores covering the full spectrum of GC levels. GC-poor isochores of R-bands may, however, correspond to 'thin' G-bands, as visualized at high resolution, leaving GC-rich and very GC-rich isochores as the real components of (high-resolution) R-band DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Alu elements sharing sequence characteristics of the old subfamilies are thought to currently be retrotranspositionally inactive. We analyzed one of these old subfamilies of Alu elements, Sx, for sequence conservation relative to the consensus and the length of the A-tail as parameters to define the presence of potential Alu Sx source genes in the human genome. Sequence identity to the left half or the right half of the Alu Sx consensus sequence was evaluated for 4424 complete elements obtained from the human genome draft sequence. A small subset of Alu Sx left halves were found to be more conserved than any of the Alu Sx right halves. Selection for promoter function in active elements may explain the slightly higher conservation of the left half. In order to determine whether this sequence identity was the result of recent activity, or simply sequence conservation for older elements, PCR amplification of some of the loci containing Sx elements with conserved left/right halves from different primate genomes was carried out. Several of these Sx Alus were found to have amplified at a later evolutionary period (<35 mya) than expected based on previous studies of Sx elements. Analysis of A-tail length, a feature correlated with current retroposition activity, varied between Alu Sx element loci in different primates, where the length increased in specific Alu elements in the human genome. The presence of few conserved Alu Sx elements and the dynamic expansion/contraction of the A-tail suggests that some of these older subfamilies may still be active at very low levels or in a few individuals. Present address: (Claudina Alemán Stevenson) Laboratory of Cell Biology, NCI/NIH Building 37/Rm 1A09, Bethesda, MD 20892, USA  相似文献   

20.
Developmental differences in methylation of human Alu repeats.   总被引:16,自引:3,他引:13       下载免费PDF全文
Alu repeats are especially rich in CpG dinucleotides, the principal target sites for DNA methylation in eukaryotes. The methylation state of Alus in different human tissues is investigated by simple, direct genomic blot analysis exploiting recent theoretical and practical advances concerning Alu sequence evolution. Whereas Alus are almost completely methylated in somatic tissues such as spleen, they are hypomethylated in the male germ line and tissues which depend on the differential expression of the paternal genome complement for development. In particular, we have identified a subset enriched in young Alus whose CpGs appear to be almost completely unmethylated in sperm DNA. The existence of this subset potentially explains the conservation of CpG dinucleotides in active Alu source genes. These profound, sequence-specific developmental changes in the methylation state of Alu repeats suggest a function for Alu sequences at the DNA level, such as a role in genomic imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号