首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well‐established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild‐type and telomerase‐deficient mice with short telomeres (third‐generation (G3 Tert −/− mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild‐type mice in which we induced a telomere dysfunction by the administration of 6‐thio‐2´‐deoxyguanosine (6‐thio‐dG). Following HDM exposure, G3 Tert −/− and 6‐thio‐dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert −/− and 6‐thio‐dG treated wild‐type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert −/− and 6‐thio‐dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert −/− and 6‐thio‐dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen‐induced airway inflammation.  相似文献   

2.
Insulin resistance and diabetes mellitus are major risk factors for Alzheimer''s disease (AD), and studies with transgenic mouse models of AD have provided supportive evidence with some controversies. To overcome potential artifacts derived from transgenes, we used a knock‐in mouse model, AppNL−F/NL−F , which accumulates Aβ plaques from 6 months of age and shows mild cognitive impairment at 18 months of age, without the overproduction of APP. In the present study, 6‐month‐old male AppNL−F/NL−F and wild‐type mice were fed a regular or high‐fat diet (HFD) for 12 months. HFD treatment caused obesity and impaired glucose tolerance (i.e., T2DM conditions) in both wild‐type and AppNL−F/NL−F mice, but only the latter animals exhibited an impaired cognitive function accompanied by marked increases in both Aβ deposition and microgliosis as well as insulin resistance in the hippocampus. Furthermore, HFD‐fed AppNL−F/NL−F mice exhibited a significant decrease in volume of the granule cell layer in the dentate gyrus and an increased accumulation of 8‐oxoguanine, an oxidized guanine base, in the nuclei of granule cells. Gene expression profiling by microarrays revealed that the populations of the cell types in hippocampus were not significantly different between the two mouse lines, regardless of the diet. In addition, HFD treatment decreased the expression of the Aβ binding protein transthyretin (TTR) in AppNL−F/NL−F mice, suggesting that the depletion of TTR underlies the increased Aβ deposition in the hippocampus of HFD‐fed AppNL−F/NL−F mice.  相似文献   

3.
hMTH1 protects against mutation during oxidative stress. It degrades 8‐oxodGTP to exclude potentially mutagenic oxidized guanine from DNA. hMTH1 expression is linked to ageing. Its downregulation in cultured cells accelerates RAS‐induced senescence, and its overexpression in hMTH1‐Tg mice extends lifespan. In this study, we analysed the effects of a brief (5 weeks) high‐fat diet challenge (HFD) in young (2 months old) and adult (7 months old) wild‐type (WT) and hMTH1‐Tg mice. We report that at 2 months, hMTH1 overexpression ameliorated HFD‐induced weight gain, changes in liver metabolism related to mitochondrial dysfunction and oxidative stress. It prevented DNA damage as quantified by a comet assay. At 7 months old, these HFD‐induced effects were less severe and hMTH1‐Tg and WT mice responded similarly. hMTH1 overexpression conferred lifelong protection against micronucleus induction, however. Since the canonical activity of hMTH1 is mutation prevention, we conclude that hMTH1 protects young mice against HFD by reducing genome instability during the early period of rapid growth and maximal gene expression. hMTH1 protection is redundant in the largely non‐growing, differentiated tissues of adult mice. In hMTH1‐Tg mice, expression of a less heavily mutated genome throughout life provides a plausible explanation for their extended longevity.  相似文献   

4.
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age‐associated cardiac dysfunction. Macroautophagy is the process by which post‐mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late‐in‐life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24‐month‐old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8‐month‐old (adult) mice (all < 0.05). To investigate the influence of late‐in‐life exercise training, additional cohorts of 21‐month‐old mice did (old‐ETR) or did not (old‐SED) complete a 3‐month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old‐ETR vs. old‐SED mice at 24 months (all < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all < 0.05) in hearts from old‐ETR vs. old‐SED mice. These data provide the first evidence that a physiological intervention initiated late‐in‐life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.  相似文献   

5.
PD‐1 is a highly glycosylated inhibitory receptor expressed mainly on T cells. Targeting of PD‐1 with monoclonal antibodies (MAbs) to block the interaction with its ligand PD‐L1 has been successful for the treatment of multiple tumors. However, polymorphisms at N‐glycosylation sites of PD‐1 exist in the human population that might affect antibody binding, and dysregulated glycosylation has been observed in the tumor microenvironment. Here, we demonstrate varied N‐glycan composition in PD‐1, and show that the binding affinity of camrelizumab, a recently approved PD‐1‐specific MAb, to non‐glycosylated PD‐1 proteins from E. coli is substantially decreased compared with glycosylated PD‐1. The structure of the camrelizumab/PD‐1 complex reveals that camrelizumab mainly utilizes its heavy chain to bind to PD‐1, while the light chain sterically inhibits the binding of PD‐L1 to PD‐1. Glycosylation of asparagine 58 (N58) promotes the interaction with camrelizumab, while the efficiency of camrelizumab to inhibit the binding of PD‐L1 is substantially reduced for glycosylation‐deficient PD‐1. These results increase our understanding of how glycosylation affects the activity of PD‐1‐specific MAbs during immune checkpoint therapy.  相似文献   

6.
7.
8.
ObjectivesIn this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer''s disease (AD).Materials and methodsClinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.ResultsIMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.ConclusionsWe have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.  相似文献   

9.
10.
Inhalation of crystalline silica causes silicosis, the most common and serious occupational disease, which is characterized by progressive lung inflammation and fibrosis. Recent studies revealed the anti‐inflammatory and anti‐fibrosis role of Caveolin‐1 (Cav‐1) in lung, but this role in silicosis has not been investigated. Thus, this study evaluated Cav‐1 regulatory effects in silicosis. It was found that Cav‐1 levels were significantly reduced in the lung from silicosis patients and silicotic mice. The silicosis models were established in C57BL/6 (wild‐type) and Cav‐1 deficiency (Cav1 −/−) mice, and Cav1 −/− mice displayed wider alveolar septa, increased collagen deposition and more silicotic nodules. The mice peritoneal‐derived macrophages were used to explore the role of Cav‐1 in silica‐induced inflammation, which plays a central role in mechanism of silicosis. Cav‐1 inhibited silica‐induced infiltration of inflammatory cells and secretion of inflammatory factors in vitro and in vivo, partly by downregulating NF‐κB pathway. Additionally, silica uptake and expression of 4‐hydroxynonenal in silicotic mice were observed, and it was found that Cav‐1 absence triggered excessive silica deposition, causing a stronger oxidative stress response. These findings demonstrate the protective effects of Cav‐1 in silica‐induced lung injury, suggesting its potential therapeutic value in silicosis.  相似文献   

11.
The aging brain is characterized by progressive increases in neuroinflammation and central insulin resistance, which contribute to neurodegenerative diseases and cognitive impairment. Recently, the Interventions Testing Program demonstrated that the anti‐diabetes drug, Canagliflozin (Cana), a sodium‐glucose transporter 2 inhibitor, led to lower fasting glucose and improved glucose tolerance in both sexes, but extended median lifespan by 14% in male mice only. Here, we show that Cana treatment significantly improved central insulin sensitivity in the hypothalamus and the hippocampus of 30‐month‐old male mice. Aged males produce more robust neuroimmune responses than aged females. Remarkably, Cana‐treated male and female mice showed significant reductions in age‐associated hypothalamic gliosis with a decrease in inflammatory cytokine production by microglia. However, in the hippocampus, Cana reduced microgliosis and astrogliosis in males, but not in female mice. The decrease in microgliosis was partially correlated with reduced phosphorylation of S6 kinase in microglia of Cana‐treated aged male, but not female mice. Thus, Cana treatment improved insulin responsiveness in aged male mice. Furthermore, Cana treatment improved exploratory and locomotor activity of 30‐month‐old male but not female mice. Taken together, we demonstrate the sex‐specific neuroprotective effects of Cana treatment, suggesting its application for the potential treatment of neurodegenerative diseases.  相似文献   

12.
13.
Target‐site mutations and detoxification gene overexpression are two major mechanisms conferring insecticide resistance. Molecular assays applied to detect these resistance genetic markers are time‐consuming and with high false‐positive rates. RNA‐Seq data contains information on the variations within expressed genomic regions and expression of detoxification genes. However, there is no corresponding method to detect resistance markers at present. Here, we collected 66 reported resistance mutations of four insecticide targets (AChE, VGSC, RyR, and nAChR) from 82 insect species. Next, we obtained 403 sequences of the four target genes and 12,665 sequences of three kinds of detoxification genes including P450s, GSTs, and CCEs. Then, we developed a Perl program, FastD, to detect target‐site mutations and overexpressed detoxification genes from RNA‐Seq data and constructed a web server for FastD (http://www.insect-genome.com/fastd). The estimation of FastD on simulated RNA‐Seq data showed high sensitivity and specificity. We applied FastD to detect resistant markers in 15 populations of six insects, Plutella xylostella, Aphis gossypii, Anopheles arabiensis, Musca domestica, Leptinotarsa decemlineata and Apis mellifera. Results showed that 11 RyR mutations in P. xylostella, one nAChR mutation in A. gossypii, one VGSC mutation in A. arabiensis and five VGSC mutations in M. domestica were found to be with frequency difference >40% between resistant and susceptible populations including previously confirmed mutations G4946E in RyR, R81T in nAChR and L1014F in VGSC. And 49 detoxification genes were found to be overexpressed in resistant populations compared with susceptible populations including previously confirmed detoxification genes CYP6BG1, CYP6CY22, CYP6CY13, CYP6P3, CYP6M2, CYP6P4 and CYP4G16. The candidate target‐site mutations and detoxification genes were worth further validation. Resistance estimates according to confirmed markers were consistent with population phenotypes, confirming the reliability of this program in predicting population resistance at omics‐level.  相似文献   

14.
Background & AimsHepatocellular carcinoma (HCC) is a common malignant tumour with high morbidity and mortality. Metabolic regulation by oncogenes is necessary for tumour growth. Testes‐specific protease 50 (TSP50) has been found to promote cell proliferation in multiple tumour types. However, the mechanism that TSP50 promotes HCC progression are not known.MethodsHepatocyte proliferation was analysed by MTT and BrdU incorporation after TSP50 transfection. Furthermore, LC‐MS/MS, co‐immunoprecipitation and GST pull‐down assays were performed to analyse protein(s) binding to TSP50. Moreover, the site‐specific mutation of G6PD was used to reveal the key site critical for G6PD acetylation mediated by TSP50. Finally, the role of G6PD K171 acetylation regulated by TSP50 in cell proliferation and tumour formation was investigated.ResultsOur data suggest that the overexpression of TSP50 accelerates hepatocyte proliferation. In addition, G6PD is an important protein that binds to TSP50 in the cytoplasm. TSP50 activates G6PD activity by inhibiting the acetylation of G6PD at the K171 site. In addition, TSP50 promotes the binding of G6PD to SIRT2. Furthermore, the K171ac of G6PD regulated by TSP50 is required for TSP50‐induced cell proliferation in vitro and tumour formation in vivo. Additionally, according to The Cancer Genome Atlas (TCGA) programme, TSP50 and G6PD are negatively correlated with the survival of HCC patients.ConclusionsCollectively, our findings demonstrate that TSP50‐induced cell proliferation and tumour formation are mediated by G6PD K171 acetylation.  相似文献   

15.
16.
In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high‐fat diet (HFD, 1–10 weeks) in 5‐month‐old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence‐associated ß‐galactosidase activity and cyclin‐dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD‐derived preadipocytes, as compared with chow diet‐derived preadipocytes. One‐month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD‐induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.  相似文献   

17.
Alzheimer''s disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid‐β peptides (Aβ) and microglia‐dominated inflammatory activation in the brain. p38α‐MAPK is activated in both neurons and microglia. How p38α‐MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α‐MAPK in all myeloid cells or specifically in microglia of APP‐transgenic mice, and examined animals for AD‐associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α‐MAPK‐deficient myeloid cells were more effective than p38α‐MAPK‐deficient microglia in reducing cerebral Aβ and neuronal impairment in APP‐transgenic mice. Deficiency of p38α‐MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α‐MAPK‐deficient myeloid cells reduced IL‐17a‐expressing CD4‐positive lymphocytes in 9 but not 4‐month‐old APP‐transgenic mice. By cross‐breeding APP‐transgenic mice with Il‐17a‐knockout mice, we observed that IL‐17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9‐month‐old myeloid p38α‐MAPK‐deficient AD mice. Thus, p38α‐MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL‐17a‐expressing lymphocytes may partially mediate the pathogenic role of p38α‐MAPK in peripheral myeloid cells. Our study supports p38α‐MAPK as a therapeutic target for AD patients.  相似文献   

18.
Promyelocytic leukemia protein (PML) is a tumor suppressor possessing multiple modes of action, including induction of apoptosis. We unexpectedly find that PML promotes necroptosis in addition to apoptosis, with Pml −/− macrophages being more resistant to TNF‐mediated necroptosis than wild‐type counterparts and PML‐deficient mice displaying resistance to TNF‐induced systemic inflammatory response syndrome. Reduced necroptosis in PML‐deficient cells is associated with attenuated receptor‐interacting protein kinase 1 (RIPK1) activation, as revealed by reduced RIPK1[S166] phosphorylation, and attenuated RIPK1‐RIPK3‐MLKL necrosome complex formation. We show that PML deficiency leads to enhanced TNF‐induced MAPK‐activated kinase 2 (MK2) activation and elevated RIPK1[S321] phosphorylation, which suppresses necrosome formation. MK2 inhibitor treatment or MK2 knockout abrogates resistance to cell death induction in PML‐null cells and mice. PML binds MK2 and p38 MAPK, thereby inhibiting p38‐MK2 interaction and MK2 activation. Moreover, PML participates in autocrine production of TNF induced by cellular inhibitors of apoptosis 1 (cIAP1)/cIAP2 degradation, since PML‐knockout attenuates autocrine TNF. Thus, by targeting MK2 activation and autocrine TNF, PML promotes necroptosis and apoptosis, representing a novel tumor‐suppressive activity for PML.  相似文献   

19.
Alzheimer''s disease (AD) is a leading cause of dementia in elderly individuals and therapeutic options for AD are very limited. Over‐activation of N‐methyl‐D‐aspartate (NMDA) receptors, amyloid β (Aβ) aggregation, a decrease in cerebral blood flow (CBF), and downstream pathological events play important roles in the disease progression of AD. In the present study, MN‐08, a novel memantine nitrate, was found to inhibit Aβ accumulation, prevent neuronal and dendritic spine loss, and consequently attenuate cognitive deficits in 2‐month‐old APP/PS1 transgenic mice (for a 6‐month preventative course) and in the 8‐month‐old triple‐transgenic (3×Tg‐AD) mice (for a 4‐month therapeutic course). In vitro, MN‐08 could bind to and antagonize NMDA receptors, inhibit the calcium influx, and reverse the dysregulations of ERK and PI3K/Akt/GSK3β pathway, subsequently preventing glutamate‐induced neuronal loss. In addition, MN‐08 had favorable pharmacokinetics, blood‐brain barrier penetration, and safety profiles in rats and beagle dogs. These findings suggest that the novel memantine nitrate MN‐08 may be a useful therapeutic agent for AD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号