首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance.  相似文献   

2.
Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.  相似文献   

3.
The Drosophila melanogaster species group is a popular model for evolutionary studies due to its morphological and ecological diversity and its inclusion of the model species D. melanogaster. However, phylogenetic relationships among major lineages within this species group remain controversial. In this report, the phylogeny of 10 species representing each of the well-supported monophyletic clades in the melanogaster group was studied using the sequences of 14 loci that together comprise 9493 nucleotide positions. Combined Bayesian analysis using gene-specific substitution models produced a 100% credible set of two trees. In the strict consensus of these trees, the ananassae subgroup branches first in the melanogaster species group, followed by the montium subgroup. The remaining lineages form a monophyletic clade in which D. ficusphila and D. elegans branch first, followed by D. biarmipes, D. eugracilis, and the melanogaster subgroup. This strongly supported phylogeny resolves most basal relationships in the melanogaster species group, and provides a framework that can be extended in the future to encompass more species.  相似文献   

4.
5.
Molecular evolution of the histone multigene family was studied by cloning and sequencing regions of the histone 3 gene in the Drosophila melanogaster species subgroup. Analysis of the nucleotide substitution pattern showed that in the coding region synonymous changes occurred more frequently to A or T in contrast to the GC-rich base composition, while in the 3' region the nucleotide substitutions were most likely in equilibrium. These results suggested that the base composition at the third codon position of the H3 gene, i.e., codon usage, has been changing to A or T in the Drosophila melanogaster species subgroup.  相似文献   

6.
中国黑腹果蝇种组40种果蝇的核型多样性研究   总被引:1,自引:0,他引:1  
通过传统的敲片、Giemsa染色的方法制片对中国黑腹果蝇种组(Drosophilamelanogasterspeciesgroup)8个种亚组40种果蝇的染色体进行了分析,共发现18种核型,即A、A′′、C、C′、C′′、C′′′、C′′′′、D、D′、D′′、E、E′、E′′、F、F′、G、H和I,其中A、A′′、C′′′、C′′′′、D′′和F′为新发现的核型。8个种亚组的基本核型分别是:嗜凤梨果蝇种亚组(D.ananassaesubgroup)的核型为F、F′、G和H型;牵牛花果蝇种亚组(D.eleganssubgroup)的核型为A和A′′型;细针果蝇种亚组(D.eugracilissubgroup)的核型为C型;嗜榕果蝇种亚组(D.ficusphilasubgroup)的核型为C′型;黑腹果蝇种亚组(D.melanogastersubgroup)的核型为C和C′型;山果蝇种亚组(D.montiumsubgroup)的核型为C、C′、C′′、D、D′、D′′、E、E′、E′′和I型;铃木氏果蝇种亚组(D.suzukiisubgroup)的核型为C′′′和C′′′′型;高桥氏果蝇种亚组(D.takahashiisubgroup)的核型为C、C′′′和C′′′′型。透明翅果蝇(D.lucipennis)雌性核型2n=8,雄性核型2n=7,雄性Ⅳ号染色体为染色体单体。此外还发现,吉川氏果蝇(D.kikkawai)、林氏果蝇(D.lini)、奥尼氏果蝇(D.ogumai)、拟嗜凤梨果蝇(D.pseudoananassae)和叔白颜果蝇(D.triauraria)5种果蝇有B染色体。本文确定了D.sp.likeelegans、D.sp.likenyinyii、D.sp.liketrapezifrons1、D.sp.liketakahashii、D.sp.liketrapezifrons2和D.sp.likeauraria等6个未描述种的核型和1个新记录种吉里果蝇(D.giriensis)的核型。本研究证明了在黑腹果蝇种组内、亚组内、种内和单雌系内的核型多样性,为果蝇遗传和进化提供了进一步的细胞学证据。  相似文献   

7.
8.
In Drosophila, chromosomal polymorphism due to paracentric inversions is very common and constitutes an adaptive character. The degree of chromosomal variability varies in different species and also in different populations of the same species. Chromosomal polymorphism in Indian natural populations of three species, D. melaonogaster, D. ananassae and D. bipectinata which belong to the melanogaster species group has been studied and the quantitative data on frequency of inversions have been reported. Behaviour of chromosome inversions has also been studied in laboratory conditions. The present review summarises the work done on inversion polymorphism in Indian populations of three species which clearly demonstrates that these three species vary in their patterns of inversion polymorphism and have evolved different mechanisms for adjustment to their environments although they belong to the same species group.  相似文献   

9.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   

10.
Summary Temperate species of the Drosophila melanogaster group enter reproductive diapause for overwintering in response to short daylength. During the prediapause period they accumulate triacylglycerols, but not glycogen, as energy resources. The capacity for storing triacylglycerols differs between species, and appears to be closely correlated with diapause and cold-hardiness; cool-temperate species, such as those of the auraria species complex, which enter a deep diapause and are highly cold-hardy, accumulate larger quantities of triacylglycerols than warm-temperate species, such as D. rufa and D. lutescens, which enter a weak diapause and are less cold-hardy. Among the cool-temperate spcies, D. subauraria occurs at a higher latitude and has the greatest capacity for accumulating triacylglycerols. A subtropical species, D. takahashii, which has no diapause in nature and is not cold-hardy, is unable to store the same quantities of triacylglycerols as temperate species.  相似文献   

11.
12.
P. Capy  J. R. David  D. L. Hartl 《Genetica》1992,86(1-3):37-46
The population biology and molecular evolution of the transposable element mariner has been studied in the eight species of the melanogaster subgroup of the Drosophila subgenus Sophophora. The element occurs in D. simulans, D. mauritiana, D. sechellia, D. teissieri, and D. yakuba, but is not found in D. melanogaster, D. erecta, or D. orena. Sequence comparisons suggest that the mariner element was present in the ancestor of the species subgroup and was lost in some of the lineages. Most species contain both active and inactive mariner elements. A deletion of most of the 3 end characterizes many elements in D. teissieri, but in other species the inactive elements differ from active ones only by simple nucleotide substitutions or small additions/deletions. Active mariner elements from all species are quite similar in nucleotide sequence, although there are some-species-specific differences. Many, but not all, of the inactive elements are also quite closely related. The genome of D. mauritiana contains 20–30 copies of mariner, that of D. simulans 0–10, and that of D. sechellia only two copies (at fixed positions in the genome). The mariner situation in D. sechellia may reflect a reduced effective population size owing to the restricted geographical range of this species and its ecological specialization to the fruit of Morinda citrifolia.  相似文献   

13.
Understanding the genetic and molecular mechanisms of morphological evolution is one of the greatest challenges in evolutionary biology. Sexually dimorphic traits, which often evolve at a high rate due to their involvement in mate choice and sexual selection, present unique opportunities for investigating changes in development over short evolutionary distances. Phylogenetic analysis is essential to provide a historical framework for comparative studies of development by establishing the order and polarity of morphological changes. In this report, we apply a new molecular phylogeny to reconstruct the evolution of male sexual characters in a group of species closely related to the model species Drosophila melanogaster. These highly variable traits include wing melanin patterns, the sex comb, and the structure of external genitalia and analia. We show that sexually dimorphic characters can diverge very rapidly among closely related species. More surprisingly, we also find a pervasive pattern of independent origin and secondary loss of male sexual traits in different evolutionary lineages.  相似文献   

14.
Temperature shock (TS) results in activation of a specific set of puffs in polytene nuclei of D. melanogaster. Earlier studies in this species from several laboratories revealed certain unique features of the major TS puff at 93D locus, which is also specifically induced by benzamide (BM) and by incubation of glands in heat shocked glands' homogenate (HSGH). We have now extended studies on TS response to several other species of Drosophila to ascertain whether loci homologous to 93D puff of D. melanogaster are present in other species. In polytene nuclei of two closely related (D. ananassae, D. kikkawai) and in two distantly related species (D. hydei, D. nasuta), six to nine puffs are induced by TS. Interestingly, in each species one of the major TS puffs, viz., 2L-2C in D. ananassae, E-11BC in D. kikkawai, 2R-48A in D. nasuta and 2-48C in D. hydei, is also specifically induced by BM, autologous species' HSGH and vitamine-B6 (vit-B6) treatment. HSGH of a different species fails to induce these puffs. These puffs thus resemble the 93D locus of D. melanogaster, although the 93D puff does not respond to vit-B6. These observations are discussed in relation to the conservation of 93D puff locus in different species of Drosophila.  相似文献   

15.
16.
17.
18.
19.
Fifteen species belonging to the obscura group of the genus Drosophila were screened for sequences homologous to Drosophila melanogaster transposable elements (TEs) as an initial step in the examination of the possible occurrence of TEs at chromosomal inversion breakpoints. Blots of genomic DNAs from species of the obscura group were hybridized at three different stringencies with 14 probes representing the major families of TEs described in D. melanogaster. The probe DNAs included copia, gypsy, 412, 297, mdg1, mdg3, 3S18, F, G, I, jockey, P, hobo, and FB3. D. melanogaster TEs were not well represented in the species of the obscura group analyzed. The TEs that were observed generally exhibited heterogeneous distributions, with the exception of F, gypsy and 412 which were ubiquitous, and 297, G, Sancho 2, hobo and FB which were not detected.by A. Bird  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号