首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1.2 kb DNA sequence, flanked by a potential seven base target-site duplication, was found inserted into a TOC1 transposable element from Chlamydomonas reinhardtii. The insertion sequence, named TOC2, is a member of a family of repeated DNA sequences that is present in all the C. reinhardtii strains tested. It resembles class II transposable elements: it possesses short 14 bp imperfect terminal repeats that begin AGGAGGGT, and sub-terminal direct repeats located within 250 bp of the termini. No large open reading frames were found. The terminal bases and length of target-site duplication are important in classifying transposable elements. On this basis TOC2 does not fall readily into existing families of class II transposable elements found in plants.  相似文献   

2.
3.
Summary The Cy transposable element system is composed of two genetically defined elements: an rcy receptor element inserted at the Bronze-1 locus; and an independently segregating regulatory element, Cy. The Cy system is not functionally homologous to any of the non-Mutator transposable element systems. Evidence is presented that supports a relationship between the Cy system and the family of Mu1-homologous transposable elements that are responsible for the Mutator phenomenon. Although related, Cy elements and the Mu1-homologous elements are not identical; Cy is inherited in a near-Mendelian fashion, in contrast to the non-Mendelian inheritance of the Mu1-homologous elements.  相似文献   

4.
Summary The molecular cloning and nucleotide sequence of elements from potato and pepper that are related to the recently identified Tst1 element are described. Sequence analysis reveals considerable conservation of sequences internal to both the Tst1 element and two of the related elements identified here. In six potato clones analysed, the II by inverted repeat first identified in the Tst1 element is conserved. Several of the elements are flanked by an 8 by direct repeat. DNA fragments which were amplified from several pepper genomes by polymerase chain reaction (PCR) amplification using the inverted repeat as sequence primers also display considerable conservation of sequences internal to the Tst1 element. These data further support the possibility that Tst1 is a non-autonomous transposable element and that Tst1 might be the first example of a transposable element which occurs in several genera of solanaceous plants.  相似文献   

5.
Eight independently isolated unstable alleles of theOpaque2 (O2) locus were analysed genetically and at the DNA level. The whole series of mutations was isolated from a maize strain carrying a wild-typeO2 allele and the transposable elementActivator (Ac) at thewx-m7 allele. Previous work with another unstable allele of the same series has shown that it was indeed caused by the insertion of anAc element. Unexpectedly, the remaining eight mutations were not caused by the designatedAc element, but by other insertions that are structurally similar or identical to one of two different autonomous transposable elements. Six mutations were caused by the insertion of a transposable element of theEnhancer/Suppressor-Mutator (En/Spm) family. Two mutations were the result of the insertion of a transposable element of theBergamo (Bg) family. Genetic tests carried out with plants carrying the unstable mutations demonstrated that all were caused by the insertion of an autonomous transposable element.  相似文献   

6.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

7.
The region immediately 3 of histidine-3 has been cloned and sequenced from two laboratory strains of the ascomycete fungus Neurospora crassa; St Lawrence 74A and Lindegren, which have different derivations from wild collections. Amongst the differences distinguishing these sequences are insertions ranging in size from 20 to 101 by present only in St Lawrence. The largest of these is flanked by a 3 by direct repeat, has terminal inverted repeats (TIR) and shares features with several known transposable elements. At 98 bp, it may be the smallest transposable element yet found in eukaryotes. There are multiple copies of the TIR in the Neurospora genome, similar but not identical to the one sequenced. PCR amplification of Neurospora genomic DNA, using 26 by of the TIR as a single primer, gave products of discrete sizes ranging from 100 by to about 1.3 kb, suggesting that the element isolated (Guest) may be a deletion derivative of a family of larger transposable elements. Guest appears to be the first transposable element reported in fungi that is not a retrotransposon.  相似文献   

8.
Members of a novel Master family of class II transposons were identified in the carrot genome. Two elements, 2.5 kb long DcMaster1 and 4.4 kb long DcMaster-a, are characterized by 22 bp imperfect terminal inverted repeats and by 3 bp target site duplications. GenBank search revealed that related elements are also present in Medicago truncatula, including a 5.1 kb element MtMaster-a. Both DcMaster-a and MtMaster-a contain open reading frames encoding for putative transposases with the complete DDE domain typical for plant class II transposable elements belonging to PIF/Harbinger superfamily, where the Master elements form a distinct group. Less than 10 copies of the DcMaster element containing the DDE domain are present in genomes of carrot and other Apiaceae, but more copies with internal deletions or insertions may occur. DcMaster elements were associated with putative coding regions in 8 of 14 identified insertion sites. PCR amplification of carrot genomic DNA using a primer complementary to TIRs of DcMaster gave products <400 bp in size. We speculate that these may all represent a MITE-like family of transposable elements that we named Krak, present in the carrot genome in at least 3,600 copies. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers DQ250792 to DQ250807 and DQ353734 to DQ353752.  相似文献   

9.
Pegasus, a novel transposable element, was discovered as a length polymorphism in the white gene of Anopheles gambiae. Sequence analysis revealed that this 535 bp element was flanked by 8 bp target site duplications and 8 bp perfect terminal inverted repeats similar to those found in many members of the Tcl family. Its small size and lack of long open reading frames preclude protein coding capacity. Southern analysis and in situ hybridization to polytene chromosomes demonstrated that Pegasus occurs in approximately 30 copies in the genomes of An. gambiae and its sibling species and is homogenous in structure but polymorphic in chromosomal location. Characterization of five additional elements by sequencing revealed nucleotide identities of 95% to 99%. Of 30 Pegasus-containing phage clones examined by PCR, only one contained an element exceeding 535 bp in length, due to the insertion of another transposable element-like sequence. Thus, the majority, if not all, extant Pegasus elements may be defective copies of a complete element whose contemporary existence in An. gambiae is uncertain. No Pegasus-hybridizing sequences were detected in nine other anophelines and three culicines examined, suggesting a very limited taxonomic distribution.  相似文献   

10.
Summary Sequences sharing homology to the transposable element Activator (Ac) are prevalent in the maize genome. A cryptic Ac-like DNA, cAc-11, was isolated from the maize inbred line 4Co63 and sequenced. Cryptic Ac-11 has over 90% homology to known Ac sequences and contains an 11 by inverted terminal repeat flanked by an 8 by target site duplication, which are characteristics of Ac and Dissociation (Ds) transposable elements. Unlike the active Ac element, which encodes a transposase, the corresponding sequence in cAc-11 has no significant open reading frame. A 44 by tandem repeat was found at one end of cAc-11, which might be a result of aberrant transposition. The sequence data suggest that cAc-11 may represent a remnant of an Ac or a Ds element. Sequences homologous to cAc-11 can be detected in many maize inbred lines. In contrast to canonical Ac elements, cAc-11 DNA in the maize genome is hypermethylated and does not transpose even in the presence of an active Ac element.  相似文献   

11.
Transposable elements are abundant, dynamic components of the genome that affect organismal phenotypes and fitness. In Drosophila melanogaster, they have increased in abundance as the species spread out of Africa, and different populations differ in their transposable element content. However, very little is currently known about how transposable elements differ between individual genotypes, and how that relates to the population dynamics of transposable elements overall. The sister species of D. melanogaster, D. simulans, has also recently become cosmopolitan, and panels of inbred genotypes exist from cosmopolitan and African flies. Therefore, we can determine whether the differences in colonizing populations are repeated in D. simulans, what the dynamics of transposable elements are in individual genotypes, and how that compares to wild flies. After estimating copy number in cosmopolitan and African D. simulans, I find that transposable element load is higher in flies from cosmopolitan populations. In addition, transposable element load varies considerably between populations, between genotypes, but not overall between wild and inbred lines. Certain genotypes either contain active transposable elements or are more permissive of transposition and accumulate copies of particular transposable elements. Overall, it is important to quantify genotype‐specific transposable element dynamics as well as population averages to understand the dynamics of transposable element accumulation over time.  相似文献   

12.
In situ hybridization on polytene chromosomes of Drosophila melanogaster was used to compare the insertion patterns of copia and mdgl transposable elements on chromosome 2 in male gametes sampled by two different methods: (i) by crossing the males tested with females from a highly inbred line with known copia and mdgl insertion profiles; (ii) by crossing the same males with females from a marked strain, and analysing the resulting homozygous chromosomes. Crossing of the males with the inbred line led to homogeneous insertion profiles for both the copia and mdgl elements in larvae, thus giving an accurate estimation of the patterns in the two gamete classes of each male. Crossing with the marked strain led, however, to heterogeneity in insertion patterns of the copia transposable element, while no significant polymorphism was observed for mdgl. The use of balancer chromosomes is thus not an adequate way of inferring transposable element insertion patterns of Drosophila males, at least for the copia element. This technique could, however, be powerful for investigating the control of movements of this element.  相似文献   

13.
To analyze the behavior of endogenous transposable elements under genomic stress, aDrosophila melanogaster inbred line was submitted to three kinds of viral perturbations. First, a retroviral plasmid containing the avian Rous Associated Virus type 2 (RAV-2) previously deleted for the viral envelope coding gene (env) was introduced by P element transformation into theDrosophila genome. An insertion of this avian retroviral sequence was detected byin situ hybridization in site 53C on polytene chromosome arm 2R. Second,Drosophila embryos were injected with RAV-2 particles produced by cell culture after transfection with the retroviral plasmid. Third, theDrosophila melanogaster inbred line was stably infected by the sigma native virus. It appears that neither the offspring of the flies in which the viral DNA was found integrated nor those from the infected sigma flies showed copia or mdgl element mobilization. Injection of the avian RAV-2 particles led, however, to the observation of somatic transpositions of mdgl element on the 2L chromosome, the copia element insertion pattern remaining stable. Thus, endogenous transposable elements show more instability in sublines injected with exogenous viral particles than in a transgenic subline containing a foreign viral insert, all transposable elements not being equally sensitive to such genomic stress. Correspondence to: I. Jouan-Dufournel  相似文献   

14.
The complete DNA sequence of three independent isolates of Uhu, a member of the Tc1-like class of transposable elements from D. heteroneura (Uhu-1, Uhu-3, and Uhu-4), has been determined. These isolates have between 95 and 96.4% nucleotide sequence identity indicating that Uhu is well conserved within this species. A comparison of the DNA sequences of Uhu and the D. melanogaster Hb1 transposable element shows that the nucleotide substitution rate for Uhu is comparable to the synonymous rate for the Adh gene in these species. Uhu has been identified in four other species of endemic Hawaiian Drosophila, D. silvestris, D. differens, D. planitibia and D. picticornis, and nine Uhu elements were isolated from genomic libraries of these four species. A 444 base pair region from within the coding region of the Uhu element, with well conserved ends, was amplified by the polymerase chain reaction and used for sequence comparison of elements from different species. The analysis of the sequence similarities between the elements within and between the species shows a grouping of the two pairs of most closely related species (D. heteroneura and D. silvestris, and D. differens and D. planitibia), but shows a much larger variation within the most recently diverged species (D. heteroneura and D. silvestris) than expected. There are extensive nucleotide substitutions and deletions in the Uhu elements from D. picticornis showing that they are degenerating and being lost in this species. These observations indicate that the Uhu element has been transmitted vertically and that transposition may have been activated at the time of formation of each species as it colonized the newly formed islands of the Hawaiian archipelago.  相似文献   

15.
M. J. Daboussi  T. Langin 《Genetica》1994,93(1-3):49-59
The genome of the fungal plant pathogenFusarium oxysporum contains at least six different families of transposable elements. Representatives of both DNA transposons and retrotransposons have been identified, either by cloning of dispersed repetitive sequences (Foret andpalm) or by trapping in the nitrate reductase gene (Fot1, Fot2 Impala andHop).Fot1 andImpala elements are related to theTc1 andmariner class of transposons. These transposable elements can affect gene structure and function in several ways: inactivation of the target gene through insertion, diversification of the nucleotide sequence by imprecise excisions, and probably chromosomal rearrangements as suggested by the extensive karyotype variation observed among field isolates. Comparisons of the distribution of these elements inFusarium populations have improved our understanding of population structure and epidemiology and provided support for horizontal genetic transfer. Also they could be developed as genetic tools for tagging genes, a cloning strategy that is particularly promising in imperfect fungi.  相似文献   

16.
Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector. Christina Scali and Tony Nolan contributed equally to the work.  相似文献   

17.
Summary The mutagenic activity of the maize transposable element system Mutator can be lost by outcrossing to standard, non-Mutator lines or by repetitive intercrossing of genetically diverse Mutator lines. Lines losing Mutator mutagenic activity in either manner retain high copy numbers (10–15 per diploid genome) of the Mutator-associated Mu transposable elements. Frequent transposition of Mu1-related elements is observed only in active Mutator lines, however. The loss of Mutator activity on intercrossing is correlated with an increase in the copy number of Mu1-like elements to 40–50 per diploid genome, implying a self-encoded or self-activated negative regulator of Mu1 transposition. The outcross loss of Mutator activity is only weakly correlated with a low Mu element copy number and may be due to the loss of a positive regulatory factor encoded by a subset of Mu1-like elements. Transposition of Mu elements in active Mutator lines generates multiple new genomic positions for about half the elements each plant generation. The appearance of Mu1-like elements in these new positions is not accompanied by equally high germinal reversion frequencies, suggesting that Mu1 may commonly transpose via a DNA replicative process.  相似文献   

18.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

19.
Summary When Drosophila melanogaster males coming from a class of strains known as inducer are crossed with females from the complementary class (reactive), a quite specific kind of sterility is observed in the F1 female progeny (denoted SF). The inducer chromosomes differ from the reactive chromosomes by the presence of a transposable element (called the I factor) that is responsible for the induction of this dysgenic symptom. In the germ line of dysgenic females, up to 100% of the reactive chromosomes may be contaminated, i.e. they acquire I factor(s) owing to very frequent replicative transpositions. A contaminated reactive stock was obtained by reconstructing the reactive genotype in the offspring of SF females and its kinetics of invasion by I elements was followed in the successive inbred dysgenic generations. The results show that the mean copy number of I elements increased very quickly up to the level of inducer strains and then stayed in equilibrium even though the dysgenic state was perpetuated by selection for SF sterility at every generation. The possible mechanisms of this copy number limitation are discussed.  相似文献   

20.
A miniature inverted-repeat transposable element (MITE), designated as Hikkoshi, was previously identified in the null Wx-A1 allele of Turkish bread wheat lines. This MITE is 165 bp in size and has 12-bp terminal inverted repeats (TIRs) flanked by 8-bp target site duplications (TSDs). Southern and PCR analyses demonstrated the presence of multiple copies of Hikkoshi in the wheat genome. Database searches indicated that Hikkoshi MITEs are also present in barley, rice and maize. A 3.4-kb element that has Hikkoshi-like TIRs flanked by 8-bp TSDs has now been identified in the rice genome. This element shows high similarity to the 5 subterminal region of the wheat Hikkoshi MITE and contains a transposase (TPase) coding region. The TPase has two conserved domains, ZnF_TTF and hATC, and its amino acid sequence shows a high degree of homology to TPases encoded by Tip100 transposable elements belonging to the hAT superfamily. We designated the 3.4-kb element as OsHikkoshi. Several wheat clones deposited in EST databases showed sequence similarity to the TPase ORF of OsHikkoshi. The sequence information from the TPase of OsHikkoshi will thus be useful in isolating the autonomous element of the Hikkoshi system from wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号