首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Firefly luciferase catalyzes two sequential partial reactions resulting in the emission of light. The enzyme first catalyzes the adenylation of substrate luciferin with Mg-ATP followed by the multistep oxidation of the adenylate to form the light emitter oxyluciferin in an electronically excited state. The beetle luciferases are members of a large superfamily, mainly comprised of nonbioluminescent enzymes that activate carboxylic acid substrates to form acyl-adenylate intermediates. Recently, the crystal structure of a member of this adenylate-forming family, acetyl-coenzyme A (CoA) synthetase, was determined in complex with an unreactive analogue of its acyl-adenylate and CoA [Gulick, A. M., Starai, V. J., Horswill, A. R., Homick, K. M., and Escalante-Semerena, J. C. (2003) Biochemistry 42, 2866-2873]. This structure presented a new conformation for this enzyme family, in which a significant rotation of the C-terminal domain brings residues of a conserved beta-hairpin motif to interact with the active site. We have undertaken a mutagenesis approach to study the roles of key residues of the equivalent beta-hairpin motif in Photinus pyralis luciferase (442IleLysTyrLysGlyTyrGlnVal449) in the overall production of light and the individual adenylation and oxidation partial reactions. Our results strongly suggest that Lys443 is critical for efficient catalysis of the oxidative half-reaction. Additionally, we provide evidence that Lys443 and Lys529, located on opposite sides of the C-terminal domain and conserved in all firefly luciferases, are each essential for only one of the partial reactions of firefly bioluminescence, supporting the proposal that the superfamily enzymes may adopt two different conformations to catalyze the two half-reactions.  相似文献   

2.
Ayabe K  Zako T  Ueda H 《FEBS letters》2005,579(20):4389-4394
The N-terminal domain (N-domain) of the firefly luciferase from Photinus pyraris has weak luminescence activity, and shows a unique light emitting profile with very long rise time of more than several minutes. Through a sensitive assay of the reaction intermediate luciferyl-adenylate (LH2-AMP), we found that the slow increase in the N-domain luminescence faithfully reflected the concentration of dissociated LH2-AMP. No such correlation was observed for wild-type or mutant enzymes with short rise time, except one with longer rise time. The results suggest that the C-terminal domain plays an indispensable role in efficiently coupling adenylation and oxidative steps.  相似文献   

3.
Luciferase is a general term for enzymes catalyzing visible light emission by living organisms (bioluminescence). The studies carried out with Photinus pyralis (firefly) luciferase allowed the discovery of the reaction leading to light production. It can be regarded as a two-step process: the first corresponds to the reaction of luciferase's substrate, luciferin (LH(2)), with ATP-Mg(2+) generating inorganic pyrophosphate and an intermediate luciferyl-adenylate (LH(2)-AMP); the second is the oxidation and decarboxylation of LH(2)-AMP to oxyluciferin, the light emitter, producing CO(2), AMP, and photons of yellow-green light (550- 570 nm). In a dark reaction LH(2)-AMP is oxidized to dehydroluciferyl-adenylate (L-AMP). Luciferase also shows acyl-coenzyme A synthetase activity, which leads to the formation of dehydroluciferyl-coenzyme A (L-CoA), luciferyl-coenzyme A (LH(2)-CoA), and fatty acyl-CoAs. Moreover luciferase catalyzes the synthesis of dinucleoside polyphosphates from nucleosides with at least a 3'-phosphate chain plus an intact terminal pyrophosphate moiety. The LH(2) stereospecificity is a particular feature of the bioluminescent reaction where each isomer, D-LH(2) or L-LH(2), has a specific function. Practical applications of the luciferase system, either in its native form or with engineered proteins, encloses the analytical assay of metabolites like ATP and molecular biology studies with luc as a reporter gene, including the most recent and increasing field of bioimaging.  相似文献   

4.
Oba Y  Ojika M  Inouye S 《FEBS letters》2003,540(1-3):251-254
Firefly luciferase can catalyze the formation of fatty acyl-CoA via fatty acyl-adenylate from fatty acid in the presence of ATP, Mg2+ and coenzyme A (CoA). A long chain fatty acyl-CoA (C16–C20), produced by luciferase from a North American firefly (Photinus pyralis) and a Japanese firefly (Luciola cruciata), was isolated and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Of a number of substrates tested, linolenic acid (C18:3) and arachidonic acid (C20:4) appear to be suitable for acyl-CoA synthesis. This evidence suggests that firefly luciferase within peroxisomes of the cells in the photogenic organ may be a bifunctional enzyme, catalyzing not only the bioluminescence reaction but also the fatty acyl-CoA synthetic reaction.  相似文献   

5.
Firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen in a two-step process. The enzyme first catalyzes the adenylation of the carboxylate substrate luciferin with Mg-ATP followed by the oxidation of the acyl-adenylate to the light-emitting oxyluciferin product. The beetle luciferases are members of a large family of nonbioluminescent proteins that catalyze reactions of ATP with carboxylate substrates to form acyl-adenylates. Formation of the luciferase-luciferyl-AMP complex is a specific example of the chemistry common to this enzyme family. Site-directed mutants at positions Lys529, Thr343, and His245 were studied to determine the effects of the amino acid changes at these positions on the individual luciferase-catalyzed adenylation and oxidation reactions. The results suggest that Lys529 is a critical residue for effective substrate orientation and that it provides favorable polar interactions important for transition state stabilization leading to efficient adenylate production. These findings as well as those with the Thr343 and His245 mutants are interpreted in the context of the firefly luciferase X-ray structures and computational-based models of the active site.  相似文献   

6.
Under physiological conditions firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen. In nature, bioluminescence emission by beetle luciferases is observed in colors ranging from green (approximately 530 nm) to red (approximately 635 nm), yet all known luciferases use the same luciferin substrate. In an earlier report [Branchini, B. R., Magyar, R. M., Murtiashaw, M. H., Anderson, S. M., and Zimmer, M. (1998) Biochemistry 37, 15311-15319], we described the effects of mutations at His245 on luciferase activity. In the context of molecular modeling results, we proposed that His245 is located at the luciferase active site. We noted too that the H245 mutants displayed red-shifted bioluminescent emission spectra. We report here the construction and purification of additional His245 mutants, as well as mutants at residues Lys529 and Thr343, all of which are stringently conserved in the beetle luciferase sequences. Analysis of specific activity and steady-state kinetic constants suggested that these residues are involved in luciferase catalysis and the productive binding of substrates. Bioluminescence emission spectroscopy studies indicated that point mutations at His245 and Thr343 produced luciferases that emitted light over the color range from green to red. The results of mutational and biochemical studies with luciferase reported here have enabled us to propose speculative mechanisms for color determination in firefly bioluminescence. An essential role for Thr343, the participation of His245 and Arg218, and the involvement of bound AMP are indicated.  相似文献   

7.
Bioluminescence and bioluminescence resonance energy transfer (BRET) are two naturally occurring light emission phenomena that have been adapted to a wide variety of important research applications including in vivo imaging and enzyme assays. The luciferase enzyme from the North American firefly, which produces yellow-green light, is a key component of many of these applications. Recognizing the heightened interest in the potential of near-infrared (nIR) light to improve these technologies, we have demonstrated that spectral emissions with maxima of 705 and 783 nm can be efficiently produced by a firefly luciferase variant covalently labeled with nIR fluorescent dyes. In one case, an outstanding BRET ratio of 34.0 was achieved emphasizing the importance of selective labeling with fluorescent dyes and the efficiency provided by the intramolecular BRET process. Additionally, we constructed a biotinylated fusion protein that similarly produced nIR light. This novel material was immobilized on solid supports containing streptavidin, demonstrating, in principle, that it may be used for receptor-based imaging. Also, the matrix-bound labeled fusion protein was used to measure factor Xa activity at physiological concentrations in blood. We believe this to be the first report of bright nIR light sources produced by chemical modification of a beetle luciferase.  相似文献   

8.
Horseradish peroxidase (HRP) catalyzes the oxidative chemiluminescent reaction of luminol, and firefly luciferase catalyzes the oxidation of firefly D-luciferin. Here we report a novel substrate, 5-(5'-azoluciferinyl)-2,3-dihydro-1,4-phthalazinedione (ALPDO), that can trigger the activity of HRP and firefly luciferase in solution because it contains both luminol and luciferin functionalities. It is synthesized by diazotization of luminol and its subsequent azo coupling with firefly luciferin. NMR spectral data show that the C5' of benzothiazole in luciferin connects the diazophthalahydrazide. The electronic absorption and fluorescence properties of ALPDO are different from those of its precursor molecules. The chemiluminescence emission spectra of the conjugate substrate display biphotonic emission characteristic of azophthalatedianion and oxyluciferin. It has an optimum pH of 8.0 for maximum activity with respect to HRP as well as luciferase. At pH 8.0 the bifunctional substrate has 12 times the activity of luminol but has 7 times less activity than the firefly luciferin-luciferase system. The specific enhancement of light emission from the cyclic hydrazide part of ALPDO helped in the sensitive assay of HRP down to 2.0 x 10(-13) M and of ATP to 1.0 x 10(-14) mol. Addition of enhancers such as firefly luciferin and p-iodophenol (PIP) to the HRP-ALPDO-H2O2 system enhanced the light output.  相似文献   

9.
The effect of CoA on the characteristic light decay of the firefly luciferase catalysed bioluminescence reaction was studied. At least part of the light decay is due to the luciferase catalysed formation of dehydroluciferyl-adenylate (L-AMP), a by-product that results from oxidation of luciferyl-adenylate (LH2-AMP), and is a powerful inhibitor of the bioluminescence reaction (IC50 = 6 nm). We have shown that the CoA induced stabilization of light emission does not result from an allosteric effect but is due to the thiolytic reaction between CoA and L-AMP, which gives rise to dehydroluciferyl-CoA (L-CoA), a much less powerful inhibitor (IC50 = 5 microm). Moreover, the V(max) for L-CoA formation was determined as 160 min(-1), which is one order of magnitude higher than the V(max) of the bioluminescence reaction. Results obtained with CoA analogues also support the thiolytic reaction mechanism: CoA analogues without the thiol group (dethio-CoA and acetyl-CoA) do not react with L-AMP and do not antagonize its inhibitor effect; CoA and dephospho-CoA have free thiol groups, both react with L-AMP and both antagonize its effect. In the case of dephospho-CoA, it was shown that it reacts with L-AMP forming dehydroluciferyl-dephospho-CoA. Its slower reactivity towards L-AMP explains its lower potency as antagonist of the inhibitory effect of L-AMP on the light reaction. Moreover, our results support the conjecture that, in the bioluminescence reaction, the fraction of LH2-AMP that is oxidized into L-AMP, relative to other inhibitory products or intermediates, increases when the concentrations of the substrates ATP and luciferin increases.  相似文献   

10.
Light emission from the North American firefly Photinus pyralis, which emits yellow-green (557-nm) light, is widely believed to be the most efficient bioluminescence system known, making this luciferase an excellent tool for monitoring gene expression. We present studies on the production of a set of thermostable red- and green-emitting luciferase mutants with bioluminescent properties suitable for dual-color reporter assays, biosensor measurements with internal controls, and imaging techniques. Starting with the luciferase variant Ser284Thr, we introduced the mutations Thr214Ala, Ala215Leu, Ile232Ala, Phe295Leu, and Glu354Lys to produce a new red-emitting enzyme with a bioluminescence maximum of 610 nm, narrow emission bandwidth, favorable kinetic properties, and excellent thermostability at 37 degrees C. By adding the same five changes to luciferase mutant Val241Ile/Gly246Ala/Phe250Ser, we produced a protein with an emission maximum of 546 nm, providing a set of thermostable enzymes whose bioluminescence maxima were separated by 64 nm. Model studies established that the luciferases could be detected at the attomole level and six orders of magnitude higher. In microplate luminometer format, mixtures containing 1.0 fmol total luciferase were quantified from measurements of simultaneously emitted red and green light. The results presented here provide evidence that it is feasible to monitor two distinct activities at 37 degrees C with these novel thermostable proteins.  相似文献   

11.
Firefly luciferase catalyzes the highly efficient emission of yellow-green light from substrate firefly luciferin by a sequence of reactions that require Mg-ATP and molecular oxygen. We had previously developed [Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., Anderson, S. M., and Zimmer, M. (1998) Biochemistry 37, 15311-15319] a molecular graphics-based working model of the luciferase active site starting with the first X-ray structure [Conti, E., Franks, N. P., and Brick, P. (1996) Structure 4, 287-298] of the enzyme without bound substrates. In our model, the luciferin binding site contains 15 residues that are within 5 A of the substrate. Using site-directed mutagenesis, we made changes at all of these residues and report here the characterization of the corresponding expressed and purified proteins. Of the 15 residues studied, 12 had a significantly (>or=4-fold K(m) difference) altered binding affinity for luciferin and seven residues, spanning the primary sequence region Arg218-Ala348, had substantially (>or=30 nm) red-shifted bioluminescence emission maxima when mutated. We report here an interpretation of the roles of the mutated residues in substrate binding and bioluminescence color determination. The results of this study generally substantiate the accuracy of our model and provide the foundation for future experiments designed to alter the substrate specificity of firefly luciferase.  相似文献   

12.
The firefly bioluminescence reaction, which uses luciferin, Mg-ATP, and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and visible light is emitted. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. Among different beetle luciferases, those from Phrixothrix railroad worm emit either yellow or red bioluminescence colors. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional Arg residue at 353, which is absent in firefly luciferases. We report here the construction and purification of a mutant at residue Arg(356), which is not conserved in beetle luciferases. By insertion of an additional residue (Arg(356)) using site-specific insertion mutagenesis in a green-emitter luciferase (Lampyris turkestanicus) the color of emitted light was changed to red and the optimum temperature of activity was also increased. Insertion of this Arg in an important flexible loop showed changes of the bioluminescence color and the luciferase reaction took place with relatively retention of its basic kinetic properties such as Km and relative activity. Comparison of native and mutant luciferases using homology modeling reveals a significant conformational change of the flexible loop in the red mutant. Movement of flexible loop brought about a new ionic interaction concomitant with a change in polarity of the emitter site, thereby leading to red emission. It is worthwhile to note that the increased optimum temperature and emission of red light might make mutant luciferase a suitable reporter for the study of gene expression and bioluminescence imaging.  相似文献   

13.
We describe here an approach for monitoring regulated gene expression by noninvasive imaging in living mice. We have utilized the tetracycline inducible system to simultaneously coregulate the expression of two genes encoding the firefly luciferase and the Cre recombinase, respectively. Results from our model system demonstrate that luciferase can be used as a noninvasive imaging marker for the regulated expression of a second gene in living mice. The integration of noninvasive imaging and inducible gene expression into current approaches of functional genomics should greatly advance our capabilities of carrying out highly controlled long-term studies of gene function in individual mice.  相似文献   

14.
Firefly luciferase catalyzes the highly efficient emission of yellow-green light from substrate firefly luciferin by a sequence of reactions that require Mg-ATP and molecular oxygen. We had previously developed a working model of the luciferase active site based on the X-ray structure of the enzyme without bound substrates. In our model, the side chain guanidinium group of Arg218 appears to be located in close proximity to the substrate's hydroxyl group at the bottom of the luciferin binding pocket. A similar role for Arg337 also has been proposed. We report here the construction, purification, and characterization of mutant luciferases R218A, R218Q, R218K, R337Q, and R337K. Alteration of the Arg218 side chain produced enzymes with 15-20-fold increases in the Km values for luciferin. The contrasting near-normal Km values for luciferin determined with the Arg337 enzymes support our proposal that Arg218 (and not Arg337) is an essential luciferin binding site residue. Bioluminescence emission studies indicated that in the absence of a positively charged group at position 218, red bioluminescence was produced. Based on this result and those of additional fluorescence experiments, we speculate that Arg218 maintains the polarity and rigidity of the emitter binding site necessary for the normal yellow-green emission of P. pyralis luciferase. The findings reported here are interpreted in the context of the firefly luciferase X-ray structures and computational-based models of the active site.  相似文献   

15.
North American firefly Photinus pyralis luciferase, which emits yellow-green light (557 nm), has been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. Luciferase variants with red-shifted bioluminescence and high specific activity can be paired with green-emitting counterparts for use in dual-color reporter assays or can be used alone for in vivo imaging. Beginning with a previously reported red-emitting thermostable mutant and using mutagenesis techniques, we engineered two luciferases with redder emission maxima while maintaining satisfactory specific activities and thermostability. The novel enzymes were expressed in HEK293 cells, where they performed similarly to Promega’s codon-optimized click beetle red luciferase in model reporter assays. When the firefly luciferase variants were codon-optimized and retested using optimized substrate concentrations, they provided 50- to 100-fold greater integrated light intensities than the click beetle enzyme. These results suggest that the novel enzymes should provide superior performance in dual-color reporter and in vivo imaging applications, and they illustrate the importance of codon optimization for assays in mammalian cells.  相似文献   

16.
We report here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)–fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyze yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. Our results demonstrate for the first time that an efficient sequential BRET–FRET energy transfer process based on firefly luciferase bioluminescence can be employed to assay physiologically important protease activities.  相似文献   

17.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the "firefly squid", Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189-197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6-2 microm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 degrees C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-gamma-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

18.
Interestingly, only the D-form of firefly luciferin produces light by luciferin–luciferase (L–L) reaction. Certain firefly luciferin analogues with modified structures maintain bioluminescence (BL) activity; however, all L-form luciferin analogues show no BL activity. To this date, our group has developed luciferin analogues with moderate BL activity that produce light of various wavelengths. For in vivo bioluminescence imaging, one of the important factors for detection sensitivity is tissue permeability of the number of photons emitted by L–L reaction, and the wavelengths of light in the near-infrared (NIR) range (700–900 nm) are most appropriate for the purpose. Some NIR luciferin analogues by us had performance for in vivo experiments to make it possible to detect photons from deep target tissues in mice with high sensitivity, whereas only a few of them can produce NIR light by the L–L reactions with wild-type luciferase and/or mutant luciferase. Based on the structure–activity relationships, we designed and synthesized here a luciferin analogue with the 5-allyl-6-dimethylamino-2-naphthylethenyl moiety. This analogue exhibited NIR BL emissions with wild-type luciferase (λmax = 705 nm) and mutant luciferase AlaLuc (λmax = 655 nm).  相似文献   

19.
Firefly luciferase is a monomeric protein composed of two globular domains. There is a wide cleft between the two domains. The N-terminal domain can be further divided into A-, B-, and C-subdomains. Previous studies showed that in vitro unfolding of firefly luciferase induced by guanidinium chloride can be described as a four-state equilibrium with two inactive intermediates (Herbst, R., et al. (1997) J. Biol. Chem. 272, 7099-7105). In order to monitor spectroscopically the conformational changes that occur in the different domains and subdomains during the multi-state unfolding process, we constructed a series of single-tryptophan mutants. These mutants were purified and characterized and shown to retain essentially all of the structural properties of the wild-type luciferase. Under equilibrium conditions, the unfolding of each mutant protein were studied by means of fluorescence and circular dichroism. The results show that different conformational changes occur in specific regions, suggesting a sequential unfolding process for firefly luciferase. Under 2.5 M GdmCl, whereas the N-domain unfolds partially holding half of the secondary structure content, the C-domain unfolds almost completely. In the equilibrium intermediate I(2), the secondary structure might stem mostly from the A- and B- subdomains.  相似文献   

20.
D-(-)-2-(6'-hydroxy-7'-[(123)I]iodobenzothiazolyl)-delta(2)-thiazoline-4-caroxylic acid (7'-[(123)I]iodo-D-luciferin) was synthesized as a novel reporter probe for in vivo studies of firefly luciferase gene expression. 7'-Iodo-D-luciferin, a nonradioactive standard, was synthesized and showed the binding property (K(M)=4.28 microM) similar to that of D-luciferin (2.53 microM) for firefly luciferase in luminescence assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号