首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast Sir2 protein regulates epigenetic gene silencing and as a possible antiaging effect it suppresses recombination of rDNA. Studies involving cobB, a bacterial SIR2-like gene, have suggested it could encode a pyridine nucleotide transferase. Here five human sirtuin cDNAs are characterized. The SIRT1 sequence has the closest homology to the S. cerevisiae Sir2p. The SIRT4 and SIRT5 sirtuins more closely resemble prokaryotic sirtuin sequences. The five human sirtuins are widely expressed in fetal and adult tissues. Recombinant E. coli cobT and cobB proteins each showed a weak NAD-dependent mono-ADP-ribosyltransferase activity using 5, 6-dimethylbenzimidazole as a substrate. Recombinant E. coli cobB and human SIRT2 sirtuin proteins were able to cause radioactivity to be transferred from [32P]NAD to bovine serum albumin (BSA). When a conserved histidine within the human SIRT2 sirtuin was converted to a tyrosine, the mutant recombinant protein was unable to transfer radioactivity from [32P]NAD to BSA. These results suggest that the sirtuins may function via mono-ADP-ribosylation of proteins.  相似文献   

2.
3.
4.
5.
Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases.  相似文献   

6.
The sirtuin proteins constitute class III histone deacetylases (HDACs). These evolutionarily conserved NAD+-dependent enzymes form an important component in a variety of cellular and biological processes with highly divergent as well as convergent roles in maintaining metabolic homeostasis, safeguarding genomic integrity, regulating cancer metabolism and also inflammatory responses. Amongst the seven known mammalian sirtuin proteins, SIRT1 has gained much attention due to its widely acknowledged roles in promoting longevity and ameliorating age-associated pathologies. The contributions of other sirtuins in the field of aging are also gradually emerging. Here, we summarize some of the recent discoveries in sirtuins biology which clearly implicate the functions of sirtuin proteins in the regulation of premature cellular senescence and accelerated aging. The roles of sirtuins in various cellular processes have been extrapolated to draw inter-linkage with anti-aging mechanisms. Also, the latest findings on sirtuins which might have potential effects in the process of aging have been reviewed.  相似文献   

7.
Conserved metabolic regulatory functions of sirtuins   总被引:3,自引:0,他引:3  
Silent information regulator 2 (Sir2) proteins, or sirtuins, are protein deacetylases/mono-ADP-ribosyltransferases found in organisms ranging from bacteria to humans. Their dependence on nicotinamide adenine dinucleotide (NAD+) links their activity to cellular metabolic status. In bacteria, the sirtuin CobB regulates the metabolic enzyme acetyl-coenzyme A (acetyl-CoA) synthetase. The earliest function of sirtuins therefore may have been regulation of cellular metabolism in response to nutrient availability. Recent findings support the idea that sirtuins play a pivotal role in metabolic control in higher organisms, including mammals. This review surveys evidence for an emerging role of sirtuins as regulators of metabolism in mammals.  相似文献   

8.
Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble mitochondrial protein. To address the function and relevance of SIRT3 in the regulation of energy metabolism, we generated and phenotypically characterized SIRT3 knockout mice. SIRT3-deficient animals exhibit striking mitochondrial protein hyperacetylation, suggesting that SIRT3 is a major mitochondrial deacetylase. In contrast, no mitochondrial hyperacetylation was detectable in mice lacking the two other mitochondrial sirtuins, SIRT4 and SIRT5. Surprisingly, despite this biochemical phenotype, SIRT3-deficient mice are metabolically unremarkable under basal conditions and show normal adaptive thermogenesis, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle.  相似文献   

9.
The sirtuins are a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Among the many genes that have been shown to affect aging in model organisms, sirtuin genes are unique in that their activity level is positively correlated with lifespan (i.e. they are anti-aging genes). Sirtuins are a druggable class of enzymes (i.e. amenable to intervention by small molecules) that could have beneficial effects on a variety of human diseases. In view of the many functions of Sirtuin 1 (SIRT1) in cells, this review focuses on its role in regulating important aspects of mitochondrial biology. Mitochondria have been linked to aging, and also to diseases of aging. Thus, sirtuins might provide a key link between mitochondrial dysfunction, aging and metabolic disease.  相似文献   

10.
Sirtuins are recently redefined as a family of nicotinamide adenine dinucleotide (NAD)-dependent deacylases. Sirtuins in mammals including human have seven members, which are SIRT1-7. Compared to other sirtuin members, not much study is focused on mitochondrial sirtuins (SIRT3-5). In mitochondrial sirtuins, SIRT4 was the last of less well-understood mitochondrial sirtuins especially for its robust enzymatic activity. This makes SIRT4 become the last puzzle of mitochondrial sirtuins, and thus brings some obstacles for studying SIRT4 biological functions or developing SIRT4 modulators. In this review, we will summarize and discuss the current findings for substrates, biological functions and possible enzymatic activities of SIRT4. The purpose of this review is to facilitate in discovering the robust enzymatic activity of SIRT4 and eventually finish this last puzzle of mitochondrial sirtuins.  相似文献   

11.
12.
Histone acetylation/deacetylation is an important chromatin modification for epigenetic regulation of gene expression. Silent information regulation2 (Sir2)-related sirtuins are nicotinamide-adenine dinucleotide (NAD+)-dependent histone deacetylases (HDAC). The mammalian sirtuin family comprises 7 members (SIRT1-7) that act in different cellular compartments to regulate metabolism and aging. The rice genome contains only two Sir2-related genes: OsSRT1 (or SRT701) and OsSRT2 (orSRT702). OsSRT1 is closely related to the mammalian SIRT6, while OsSRT2 is homologous to SIRT4. Previous work has shown that OsSRT1 is required for the safeguard against genome instability and cell damage in rice plant. In this work we investigated the role of OsSRT1 on genome-wide acetylation of histone H3 lysine 9 (H3K9ac) and studied the genome-wide binding targets of OsSRT1. The study reveals that OsSRT1 binds to loci with relatively low levels of H3K9ac and directly regulates H3K9ac and expression of many genes that are related to stress and metabolism, indicating that OsSRT1 is an important site-specific histone deacetylase for gene regulation in rice. In addition, OsSRT1 is found to also target to several families of transposable elements, suggesting that OsSRT1 is directly involved in transposable element repression.  相似文献   

13.
Telomere dysfunction is linked with genome instability and premature aging. Roles for sirtuin proteins at telomeres are thought to promote lifespan in yeast and mammals. However, replicative lifespan of the budding yeast Saccharomyces cerevisiae shortens upon deletion of Rif1, a protein that limits the recruitment of the sirtuin histone deacetylase Sir2 to telomeres. Here we show that Rif1 maintains replicative lifespan by ultimately stabilizing another age‐related chromosomal domain harboring the ribosomal DNA (rDNA) repeats. Deletion of Rif1 increases Sir2 localization to telomeres and the silent mating‐type loci, while releasing a pool of the histone deacetylase from the intergenic spacer 1 (IGS1) of rDNA. This is accompanied by a disruption of IGS1 silent chromatin assembly and increases in aberrant recombination within rDNA repeats. Lifespan defects linked with Rif1 deletion are abolished if rDNA repeats are forcibly stabilized via deletion of the replication fork‐blocking protein Fob1. In addition, Sir2 overexpression prevents Rif1 deletion from disrupting Sir2 at IGS1 and shortening lifespan. Moreover, subjecting cells lacking Rif1 to caloric restriction increases IGS1 histone deacetylation and lifespan, while uncovering novel genetic interactions between RIF1 and SIR2. Our data indicate that Rif1 maintains lifespan‐sustaining levels of Sir2 at rDNA by preventing excessive recruitment of the histone deacetylase to telomeric and silent mating‐type loci. As sirtuin histone deacetylases, such as Sir2 or mammalian SIRT6, each operate at multiple age‐related loci, we propose that factors limiting the localization of sirtuins to certain age‐related loci can promote lifespan‐sustaining roles of these sirtuins elsewhere in the genome.  相似文献   

14.
Abstract

Nicotinamide adenine dinucleotide (NAD) is a central metabolic cofactor by virtue of its redox capacity, and as such regulates a wealth of metabolic transformations. However, the identification of the longevity protein silent regulator 2 (Sir2), the founding member of the sirtuin protein family, as being NAD+-dependent reignited interest in this metabolite. The sirtuins (SIRT1-7 in mammals) utilize NAD+ to deacetylate proteins in different subcellular compartments with a variety of functions, but with a strong convergence on optimizing mitochondrial function. Since cellular NAD+ levels are limiting for sirtuin activity, boosting its levels is a powerful means to activate sirtuins as a potential therapy for mitochondrial, often age-related, diseases. Indeed, supplying excess precursors, or blocking its utilization by poly(ADP-ribose) polymerase (PARP) enzymes or CD38/CD157, boosts NAD+ levels, activates sirtuins and promotes healthy aging. Here, we discuss the current state of knowledge of NAD+ metabolism, primarily in relation to sirtuin function. We highlight how NAD+ levels change in diverse physiological conditions, and how this can be employed as a pharmacological strategy.  相似文献   

15.
16.
Many enzymes that catalyze protein post-translational modifications can specifically modify multiple target proteins. However, little is known regarding the molecular basis and evolution of multispecificity in these enzymes. Here, we used a combined bioinformatics and experimental approaches to investigate the evolution of multispecificity in the sirtuin-1 (SIRT1) deacetylase. Guided by bioinformatics analysis of SIRT1 orthologs and substrates, we identified and examined important amino acid substitutions that have occurred during the evolution of sirtuins in Metazoa and Fungi. We found that mutation of human SIRT1 at these positions, based on sirtuin orthologs from Fungi, could alter its substrate specificity. These substitutions lead to reduced activity toward K382 acetylated p53 protein, which is only present in Metazoa, without affecting the high activity toward the conserved histone substrates. Results from ancestral sequence reconstruction are consistent with a model in which ancestral sirtuin proteins exhibited multispecificity, suggesting that the multispecificity of some metazoan sirtuins, such as hSIRT1, could be a relatively ancient trait.  相似文献   

17.
18.
The sirtuin family of NAD-dependent histone deacetylases (HDACs) consists of seven mammalian proteins, SIRT1-7. Many of the sirtuin isoforms also deacetylate nonhistone substrates, such as p53 (SIRT1) and α-tubulin (SIRT2). The sirtuin literature focuses on pharmacological activators of SIRT1 (e.g., resveratrol, SRT1720), proposed as therapeutics for diabetes, neurodegeneration, inflammation, and others. However, many of the SIRT1 activator results may have been due to artifacts in the assay methodology (i.e., use of fluorescently tagged substrates). A biological role for SIRT1 in cancer has been given less scrutiny but is no less equivocal. Although proposed initially as an oncogene, we present herein compelling data suggesting that SIRT1 is indeed a context-specific tumor suppressor. For oncology, SIRT1 inhibitors (dual SIRT1/2) are indicated as potential therapeutics. A number of sirtuin inhibitors have been developed but with mixed results in cellular systems and animal models. It is unclear whether this has been due to poorly understood model systems, signalling redundancy, and/or inadequately potent and selective tool compounds. This review provides an overview of recent developments in the field of SIRT1 function. While focusing on oncology, it aims to shed light on new concepts of expanding the selectivity spectrum, including other sirtuins such as SIRT2.  相似文献   

19.
Structure and biochemical functions of SIRT6   总被引:1,自引:0,他引:1  
  相似文献   

20.
Grubisha O  Smith BC  Denu JM 《The FEBS journal》2005,272(18):4607-4616
The Sir2 family of histone/protein deacetylases (sirtuins) is comprised of homologues found across all kingdoms of life. These enzymes catalyse a unique reaction in which NAD+ and acetylated substrate are converted into deacetylated product, nicotinamide, and a novel metabolite O-acetyl ADP-ribose. Although the catalytic mechanism is well conserved across Sir2 family members, sirtuins display differential specificity toward acetylated substrates, which translates into an expanding range of physiological functions. These roles include control of gene expression, cell cycle regulation, apoptosis, metabolism and ageing. The dependence of sirtuin activity on NAD+ has spearheaded investigations into how these enzymes respond to metabolic signals, such as caloric restriction. In addition, NAD+ metabolites and NAD+ salvage pathway enzymes regulate sirtuin activity, supporting a link between deacetylation of target proteins and metabolic pathways. Apart from physiological regulators, forward chemical genetics and high-throughput activity screening has been used to identify sirtuin inhibitors and activators. This review focuses on small molecule regulators that control the activity and functions of this unusual family of protein deacetylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号