首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In culture, Azorhizobium caulinodans used at least four terminal oxidases, cytochrome aa3 (cytaa3), cytd, cyto, and a second a-type cytochrome, which together mediated general, respiratory electron (e-) transport to O2. To genetically dissect physiological roles for these various terminal oxidases, corresponding Azorhizobium apocytochrome genes were cloned, and three cytaa3 mutants, a cytd mutant, and a cytaa3, cytd double mutant were constructed by reverse genetics. These cytochrome oxidase mutants were tested for growth, oxidase activities, and N2 fixation properties both in culture and in symbiosis with the host plant Sesbania rostrata. The cytaa3 mutants grew normally, fixed N2 normally, and remained fully able to oxidize general respiratory e- donors (NADH, succinate) which utilize a cytc-dependent oxidase. By difference spectroscopy, a second, a-type cytochrome was detected in the cytaa3 mutants. This alternative a-type cytochrome (Amax = 610 nm) was also present in the wild type but was masked by bona fide cytaa3 (Amax = 605 nm). In late exponential-phase cultures, the cytaa3 mutants induced a new, membrane-bound, CO-binding cytc550, which also might serve as a cytc oxidase (a fifth terminal oxidase). The cloned Azorhizobium cytaa3 genes were strongly expressed during exponential growth but were deactivated prior to onset of stationary phase. Azorhizobium cytd mutants showed 40% lower N2 fixation rates in culture and in planta, but aerobic growth rates were wild type. The cytaa3, cytd double mutant showed 70% lower N2 fixation rates in planta. Pleiotropic cytc mutants were isolated by screening for strains unable to use N,N,N',N'-tetramethyl-p-phenylenediamine as a respiratory e- donor. These mutants synthesized no detectable cytc, excreted coproporphyrin, grew normally in aerobic minimal medium, grew poorly in rich medium, and fixed N2 poorly both in culture and in planta. Therefore, while aerobic growth was sustained by quinol oxidases alone, N2 fixation required cytc oxidase activities. Assuming that the terminal oxidases function as do their homologs in other bacteria, Azorhizobium respiration simultaneously employs both quinol and cytc oxidases. Because Azorhizobium terminal oxidase mutants were able to reformulate their terminal oxidase mix and grow more or less normally in aerobic culture, these terminal oxidases are somewhat degenerate. Its extensive terminal oxidase repertoire might allow Azorhizobium spp. to flourish in wide-ranging O2 environments.  相似文献   

2.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

3.
The function of the reversible oxygen-binding hemoprotein from Vitreoscilla (VHb), which enhances oxygen-limited cell growth and recombinant protein production when functionally expressed in Escherichia coli, was investigated in wild-type E. coli and in E. coli mutants lacking one of the two terminal oxidases, cytochrome o complex (aerobic terminal oxidase, Cyo) or cytochrome d complex (microaerobic terminal oxidase, Cyd). Deconvolution of VHb, cytochrome o, and cytochrome d bands from in vivo absorption spectra revealed a 5-fold enhancement in cytochrome o content and a 1.5-fold increment in cytochrome d by VHb under microaerobic environments (dissolved oxygen less than 2% air saturation). Based upon oxygen uptake kinetics measurements of these mutants, the apparent oxygen affinity of the Cyo(+), Cyd(-) E. coli was increased in the presence of VHb, but no difference in the apparent K(m) was observed for the Cyo(-), Cyd(+) strain. Results suggest that the expression of VHb in E. coli increases the level and activity of terminal oxidases and thereby improves the efficiency of microaerobic respiration and growth.  相似文献   

4.
The function of the reversible oxygen-binding hemoprotein from Vitreoscilla (VHb), which enhances oxygen-limited cell growth and recombinant protein production when functionally expressed in Escherichia coli, was investigated in wild-type E. coli and in E. coli mutants lacking one of the two terminal oxidases, cytochrome o complex (aerobic terminal oxidase, Cyo) or cytochrome d complex (microaerobic terminal oxidase, Cyd). Deconvolution of VHb, cytochrome o, and cytochrome d bands from in vivo absorption spectra revealed a 5-fold enhancement in cytochrome o content and a 1.5-fold increment in cytochrome d by VHb under microaerobic environments (dissolved oxygen less than 2% air saturation). Based upon oxygen uptake kinetics measurements of these mutants, the apparent oxygen affinity of the Cyo(+), Cyd(-) E. coli was increased in the presence of VHb, but no difference in the apparent K(m) was observed for the Cyo(-), Cyd(+) strain. Results suggest that the expression of VHb in E. coli increases the level and activity of terminal oxidases and thereby improves the efficiency of microaerobic respiration and growth. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
6.
It has been a long-standing hypothesis that the endosymbiotic rhizobia (bacteroids) cope with a concentration of 10 to 20 nM free O2 in legume root nodules by the use of a specialized respiratory electron transport chain terminating with an oxidase that ought to have a high affinity for O2. Previously, we suggested that the microaerobically and anaerobically induced fixNOQP operon of Bradyrhizobium japonicum might code for such a special oxidase. Here we report the biochemical characteristics of this terminal oxidase after a 27-fold enrichment from membranes of anaerobically grown B. japonicum wild-type cells. The purified oxidase has TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity as well as cytochrome c oxidase activity. N-terminal amino acid sequencing of its major constituent subunits confirmed that presence of the fixN,fixO, and fixP gene products. FixN is a highly hydrophobic, heme B-binding protein. FixO and FixP are membrane-anchored c-type cytochromes (apparent Mrs of 29,000 and 31,000, respectively), as shown by their peroxidase activities in sodium dodecyl sulfate-polyacrylamide gels. All oxidase properties are diagnostic for it to be a member of the cbb3-type subfamily of heme-copper oxidases. The FixP protein was immunologically detectable in membranes isolated from root nodule bacteroids, and 85% of the total cytochrome c oxidase activity in bacteroid membranes was contributed by the cbb3-type oxidase. The Km values for O2 of the purified enzyme and of membranes from different B. japonicum wild-type and mutant strains were determined by a spectrophotometric method with oxygenated soybean leghemoglobin as the sole O2 delivery system. The derived Km value for O2 of the cbb3-type oxidase in membranes was 7 nM, which is six- to eightfold lower than that determined for the aerobic aa3-type cytochrome c oxidase. We conclude that the cbb3-type oxidase supports microaerobic respiration in endosymbiotic bacteroids.  相似文献   

7.
C(4)-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N(2)-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD(+)-malic enzyme (DME) is required for N(2) fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N(2) fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N(2) at reduced rates, a pckA dme double mutant had no N(2)-fixing activity (Fix(-)). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix(-) phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix(-) nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)(+)-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N(2) fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s).  相似文献   

8.
Two Bradyrhizobium japonicum cytochrome mutants were obtained by Tn5 mutagenesis of strain LO and were characterized in free-living cultures and in symbiosis in soybean root nodules. One mutant strain, LO501, expressed no cytochrome aa3 in culture; it had wild-type levels of succinate oxidase activity but could not oxidize NADH or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The cytochrome content of LO501 root nodule bacteroids was nearly identical to that of the wild type, but the mutant expressed over fourfold more bacteroid cytochrome c oxidase activity than was found in strain LO. The Tn5 insertion of the second mutant, LO505, had a pleiotropic effect; this strain was missing cytochromes c and aa3 in culture and had a diminished amount of cytochrome b as well. The oxidations of TMPD, NADH, and succinate by cultured LO505 cells were very similar to those by the cytochrome aa3 mutant LO501, supporting the conclusion that cytochromes c and aa3 are part of the same branch of the electron transport system. Nodules formed from the symbiosis of strain LO505 with soybean contained no detectable amount of leghemoglobin and had no N2 fixation activity. LO505 bacteroids were cytochrome deficient but contained nearly wild-type levels of bacteroid cytochrome c oxidase activity. The absence of leghemoglobin and the diminished bacterial cytochrome content in nodules from strain LO505 suggest that this mutant may be deficient in some aspect of heme biosynthesis.  相似文献   

9.
The surB gene was identified as a gene product required for Escherichia coli cells to exit stationary phase at 37 degrees C under aerobic conditions. surB was shown to be the same as cydC, whose product is required for the proper assembly and activity of cytochrome d oxidase. Cytochrome d oxidase, encoded by the cydAB operon, is one of two alternate terminal cytochrome oxidases that function during aerobic electron transport in E. coli. Mutations inactivating the cydAB operon also cause a temperature-sensitive defect in exiting stationary phase, but the phenotype is not as severe as it is for surB mutants. In this study, we examined the phenotypes of surB1 delta(cydAB) double mutants and the ability of overexpression of cytochrome o oxidase to suppress the temperature-sensitive stationary-phase-exit defect of surB1 and delta(cydAB) mutants and analyzed spontaneous suppressors of surB1. Our results indicate that the severe temperature-sensitive defect in exiting stationary phase of surB1 mutants is due both to the absence of terminal cytochrome oxidase activity and to the presence of a defective cytochrome d oxidase. Membrane vesicles prepared from wild-type, surB1, and delta(cydAB) strains produced superoxide radicals at the same rate in vitro. Therefore, the aerobic growth defects of the surB1 and delta(cydAB) strains are not due to enhanced superoxide production resulting from the block in aerobic electron transport.  相似文献   

10.
 A method to isolate mutants with derepressed expression of cytochrome oxidases and better symbiotic performance is presented. A mutant of Rhizobium etli, CFN030, isolated by its azide-resistant phenotype, was obtained by transposon Tn5-mob mutagenesis. This mutant has a derepressed expression of cytochrome aa3, higher respiratory activities when cultured microaerobically and an improved symbiotic nitrogen fixation capacity. This phenotype was similar to the previously described mutant CFN037, which was isolated by its increased capacity to oxidize N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) [Soberón M et al. (1990) J Bacteriol 172:1676–1680]. We show here that although both mutants have a similar symbiotic phenotype, they are affected in different genes. Strain CFN030 has the Tn5 inserted in the chromosome while in strain CFN037 the transposon was located in plasmid b. Cytochrome spectral analysis of both mutant strains in the post-exponential phase of growth, showed the expression of an additional terminal oxidase (cbb3) that is not expressed in the wild-type strain. Received: 10 April 1995/Received revision: 21 August 1995/Accepted: 7 September1995  相似文献   

11.
Escherichia coli strains that lacked the d-type cytochrome oxidase, the terminal oxidase with a high affinity for O2, grew anaerobically as well as the wild type did and were not impaired in the ability to evolve H2 from either glucose or formate. The anaerobic synthesis and activity of nitrogenase in transconjugants of these strains carrying Klebsiella pneumoniae nif genes were also normal. However, the behavior towards O2 of anaerobically grown bacteria lacking the d-type oxidase differed from that of the wild type in the following ways: the potential O2 uptake was lower, H2 evolution and nitrogenase activity supported by fermentation were more strongly inhibited by O2, and microaerobic O2-dependent nitrogenase activity in the absence of a fermentable carbon source did not occur. These results show that the d-type oxidase serves two functions in enteric bacteria--to conserve energy under microaerobic conditions and to protect anaerobic processes from inhibition by O2.  相似文献   

12.
The relationship between whole-cell redox potential, cytochrome composition in free-living culture and symbiotic activity of Sinorhizobium meliloti was studied. Three Tn5-induced mutants with increased cellular redox potential were generated. Stationary cultures of mutants Tb9 and Tb16 in contrast to the parental strain produced the b-type terminal oxidase that may be similar to the symbiotically essential cytochrome oxidase cbb3 of Bradyrhizobium japonicum. Increase in the symbiotic effectiveness of all three mutants and in O2 consumption rate in free-living cultures was observed. Mutants Tb1 and Tb16 were also characterized by an increase in fixNOQP gene expression. Consequently, the mutations probably affect at least two different steps of rhizobial respiratory metabolism operating both in free-living cells and endosymbiotic forms.  相似文献   

13.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO(2) and H(2) (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O(2). All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup mutant, had CO(2) fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   

14.
15.
Abstract The in situ method for determination of reduction levels of cytochromes b and c pools during steady-state growth (Pronk et al., Anal. Biochem. 214, 149–155, 1993) was applied to chemostat cultures of the wild-type, a cytochrome aa3 single mutant and a cytochrome aa3/d double mutant of Azorhizobium caulinodans . For growth with NH4+ as the N source, the results indicate that (i) the aa3 mutant strains growing at a dissolved O2 tension of 0.5% possess an active alternative cytochrome c oxidase, which is hardly present during fully aerobic growth, and assuming that (i) also pertains to the wild-type, (ii) the wild-type uses cytochrome aa3 under fully aerobic conditions. For growth with N2 as the N source, it was found that the aa3 mutant strains growing at dissolved O2 tensions ranging from 0.5 to 3.0% also contain an active alternative cytochrome c oxidase.  相似文献   

16.
The heme-copper oxidases convert the free energy liberated in the reduction of O(2) to water into a transmembrane proton electrochemical potential (protonmotive force). One of the essential structural elements of the enzyme is the D-channel, which is thought to be the input pathway, both for protons which go to form H(2)O ("chemical protons") and for protons that get translocated across the lipid membrane ("pumped protons"). The D-channel contains a chain of water molecules extending about 25 A from an aspartic acid (D132 in the Rhodobacter sphaeroides oxidase) near the cytoplasmic ("inside") enzyme surface to a glutamic acid (E286) in the protein interior. Mutations in which either of these acidic residues is replaced by their corresponding amides (D132N or E286Q) result in severe inhibition of enzyme activity. In the current work, an asparagine located in the D-channel has been replaced by the corresponding acid (N139 to D; N98 in bovine enzyme) with dramatic consequences. The N139D mutation not only completely eliminates proton pumping but, at the same time, confers a substantial increase (150-300%) in the steady-state cytochrome oxidase activity. The N139D mutant of the R. sphaeroides oxidase was further characterized by examining the rates of individual steps in the catalytic cycle. Under anaerobic conditions, the rate of reduction of heme a(3) in the fully oxidized enzyme, prior to the reaction with O(2), is identical to that of the wild-type oxidase and is not accelerated. However, the rate of reaction of the fully reduced enzyme with O(2) is accelerated by the N139D mutation, as shown by a more rapid F --> O transition. Whereas the rates of formation and decay of the oxygenated intermediates are altered, the nature of the oxygenated intermediates is not perturbed by the N139D mutation.  相似文献   

17.
18.
19.
Twenty Azorhizobium caulinodans vector insertion (Vi) mutants unable to catabolize nicotinate (Nic- phenotype) were identified and directly cloned as pVi plasmids. These pVi plasmids were used as DNA hybridization probes to isolate homologous wild-type sequences. From subsequent physical mapping experiments, the nic::Vi mutants defined four distinct loci. Two, possibly three, of these loci are physically linked. A. caulinodans nic loci II and III encode the structural genes for nicotinate catabolism; nic loci I and IV encode nicotinate-driven respiratory chain components. Recombinant lambda bacteriophages corresponding to three of these loci were subcloned in pRK293; resulting plasmids were used for complementation tests with resolved nic::IS50 derivatives of the nic::Vi mutants. When wild-type A. caulinodans was cultured in defined liquid medium under 3% O2, nicotinate catabolism stimulated N2 fixation 10-fold. In these exponentially growing cultures, the entire (300 microM) nicotinate supplement was exhausted within 10 h. While nic::Vi mutants retained the ability to fix some N2, they did so at rates only 10% of that of the wild type: nitrogenase activity by nic::Vi mutants was not stimulated by 300 microM added nicotinate. Higher-level (5 mM) nicotinate supplementation inhibited N2 fixation. Because 5 mM nicotinate repressed nitrogenase induction in all nic::Vi mutants as well, this repression was independent of nicotinate catabolism. During catabolism, nicotinate is first oxidized to 6-OH-nicotinate by a membrane-bound nicotinate hydroxylase which drives a respiratory chain to O2. In A. caulinodans wild-type cultures, added 300 microM 6-OH-nicotinate stimulated N2 fixation twofold better than did added 300 microM nicotinate. Likewise, nic::Vi mutant 61302, defective in nicotinate hydroxylase, fixed N2 at wild-type levels when supplemented with 300 microM 6-OH-nicotinate. Therefore, nicotinate catabolism stimulates N2 fixation not by nicotinate hydroxylase-driven respiration but rather by some subsequent aspect(s) of nicotinate catabolism.  相似文献   

20.
Klebsiella pneumoniae synthesized only b-type and d-type cytochromes under the wide range of growth conditions tested, and reaction with CO revealed two potential oxidases. The o-type oxidase was produced only in the presence of O2 and appeared to be repressed by glucose. The d-type oxidase was, by contrast, produced only in the absence of measurable O2 (less than 1 microM), and was the only oxidase expressed in nitrogen-fixing conditions. It was extracted from the membrane, purified and shown to be similar to that from E. coli in being a heterodimer (subunits of Mr 52,000 and 35,000), in containing two distinguishable b haems and haem d (one or two molecules per molecule of oxidase), and in being able to react with O2 to give a stable oxygenated intermediate. The purified d-type cytochrome oxidase had a very high affinity for O2 (Km 20 nM; measured by the spectral properties of leghaemoglobin). It is proposed that this provides a role for this oxidase in lowering the O2 concentration to allow nitrogenase synthesis and function, and to provide a terminal oxidase to permit electron-transport-coupled ATP synthesis which supports the increase in efficiency of nitrogen fixation observed under microaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号