共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple cAMP-binding proteins in Aplysia tissues 总被引:3,自引:0,他引:3
While it is recognized that cAMP is able to regulate distinct cellular processes differentially, the molecular basis for the diversity of its effects remains unclear. Using photoaffinity labeling with 32P-8 azido-cAMP and two-dimensional gel analysis, we have identified 26 electrophoretic variants of cAMP-binding proteins in the six different tissues of the marine mollusc Aplysia californica sampled. Some of these proteins are found in most tissues, others only in a few; still others appear to be restricted to a single tissue. All of these proteins bind cAMP specifically. The two-dimensional polyacrylamide gel electrophoretic patterns of binding proteins seen in the different tissues fall into three classes. One pattern is shared by the nervous system and embryos. The second is found in muscular tissues (heart, buccal muscle, siphon, and gill). The third pattern is specific to sperm. The presence of distinct subsets of cAMP-binding proteins in different tissues suggests that at least some of the diversity in cAMP's regulatory function may result from diversity in the proteins that bind it. 相似文献
2.
Numerous green-fluorescent neurons have been revealed by means of the glyoxylic acid histochemical method in cryostat sections of several organs of two Adriatic aplysiid gastropods, Aplysia depilans and A. fasciata. Catecholamine-containing perikarya and their processes have been found to be especially abundant in the vaginal portion of the large hermaphrodite duct, in the penis and its sheath, and in the gill. In the reproductive organs, two subpopulations of catecholamine-containing neurons could be distinguished according to their size and location. Axons of larger neurons formed bundles which seemed to project at the CNS. 相似文献
3.
4.
Differential expression patterns of NDRG family proteins in the central nervous system. 总被引:2,自引:0,他引:2
Tomohiko Okuda Koichi Kokame Toshiyuki Miyata 《The journal of histochemistry and cytochemistry》2008,56(2):175-182
The N-myc downstream-regulated gene (NDRG) family consists of four proteins: NDRG1, NDRG2, NDRG3, and NDRG4 in mammals. NDRG1 has been thoroughly studied as an intracellular protein associated with stress response, cell growth, and differentiation. A nonsense mutation in the NDRG1 gene causes hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D. We previously generated Ndrg1-deficient mice and found that they exhibited peripheral nerve degeneration caused by severe demyelination, but that the complicated motor abilities were retained. These results implied that other NDRG family proteins may compensate for the NDRG1 deficiency in the central nervous system. In this study we raised specific antibodies against each member of the NDRG protein family and examined their cellular expression patterns in the mouse brain. In the cerebrum, NDRG1 and NDRG2 were localized in oligodendrocytes and astrocytes, respectively, whereas NDRG3 and NDRG4 were ubiquitous. In the cerebellum, NDRG1 and NDRG4 were localized in Purkinje cells and NDRG2 in Bergmann glial cells. NDRG3 was detected in the nuclei in most cells. These expression patterns demonstrated the cell type-specific and ubiquitous localization of the NDRG family proteins. Each NDRG may play a partially redundant role in specific cells in the brain. 相似文献
5.
Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a 总被引:10,自引:0,他引:10
The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome. To achieve this, we have determined the solution structure of the ubl domain of hPLIC-2 and obtained a structural model of hHR23a by using NMR spectroscopy and homology modeling. We have also compared the S5a binding properties of ubiquitin, SUMO-1, and the ubl domains of hPLIC-2 and hHR23a and have identified the residues on their respective S5a contact surfaces. We provide evidence that the S5a-binding surface on the ubl domain of hPLIC-2 is required for its interaction with the proteasome. This study provides structural insights into protein recognition by the proteasome, and illustrates how the protein surface of a commonly utilized fold has highly evolved for various biological roles. 相似文献
6.
Abstract The cAMP-binding proteins of different yeasts were photoaffinity labeled using 8- N 3 -[32 P]cAMP, and the M r values of the labeled proteins estimated by SDS-polyacrylamide gel electrophoresis. The M r values of the cAMP-binding proteins may be grouped into two size classes: (A) M r of about 50 000 represented by Saccharomyces cerevisiae and S. uvarum , and (B) M r of about 60 000 represented by Kluyveromyces fragilis, K. lactis, K. marxianus, S. globosus and S. rouxii . 相似文献
7.
Structural studies on lens proteins 总被引:3,自引:3,他引:0
The sequence around the thiol group in lens proteins has been investigated. The proteins were converted into their carboxy[14C]methyl derivatives and submitted to partial acid hydrolysis, or digested with proteolytic enzymes. Acid hydrolysis of bovine α-crystallin gives N-seryl-(S-carboxymethyl)cysteine, Ser-CMCys (Waley, 1965a), but this dipeptide is not obtained from β-crystallin or γ-crystallin. Trypsin and chymotrypsin also give different peptides from the three crystallins. The radioactive peptide from α-crystallin and chymotrypsin has the sequence Ser-CMCys-Ser-Leu; another peptide, Asp-Leu-Leu-Phe, was also identified. The radioactive peptides obtained from bovine α-crystallin are probably also obtained from human α-crystallin, and from bovine and human albuminoid (the insoluble lens protein). α-Crystallin has been fractionated by chromatography in urea on DEAE-cellulose. Comparison of the fractions by peptide `mapping', and immunochemically, shows that they fall into two classes. The fraction eluted first differs from the later fractions, but the later fractions resemble each other The first fraction may represent impurities, or it may be a structurally different sub-unit of α-crystallin. 相似文献
8.
The content, synthesis and transport of d ‐aspartate (d ‐Asp) in the CNS of Aplysia californica is investigated using capillary electrophoresis (CE) with both laser‐induced fluorescence and radionuclide detection. Millimolar concentrations of d ‐Asp are found in various regions of the CNS. In the cerebral ganglion, three adjacent neuronal clusters have reproducibly different d ‐Asp levels; for example, in the F‐ and C‐clusters, up to 85% of the free Asp is present in the d ‐form. Heterogeneous distribution of d ‐Asp is also found in the individual identified neurons tested, including the optical ganglion top‐layer neurons, metacerebral cells, R2 neurons, and F‐, C‐ and G‐cluster neurons. The F‐cluster neurons have the highest percentage of d ‐Asp (~58% of the total Asp), whereas the lowest value of ~8% is found in R2 neurons. In pulse‐chase experiments with radiolabeled d ‐Asp, followed by CE with radionuclide detection, the synthesis of d ‐Asp from l ‐aspartate (l ‐Asp) is confirmed. Is d ‐Asp in the soma, or is it transported to distantly located release sites? d ‐Asp is clearly detected in the major nerves of A. californica, including the pleuroabdominal and cerebrobuccal connectives and the anterior tentacular nerves, suggesting it is transported long distances. In addition, both d ‐Asp and l ‐Asp are transported in the pleuroabdominal connectives in a colchicine‐dependent manner, whereas several other amino acids are not. Finally, d ‐Asp produces electrophysiological effects similar to those induced by l ‐Asp. These data are consistent with an active role for d ‐Asp in cell‐to‐cell communication. 相似文献
9.
The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein–protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions. 相似文献
10.
Relationships within the family of GTP-binding proteins isolated from bovine central nervous system 总被引:16,自引:0,他引:16
Four members of a family of GTP-binding proteins (G-proteins) which translate stimulation of extracellular receptors into regulation of intracellular enzymes were isolated from the bovine central nervous system. These proteins were examined for functional similarities and cross-reactivity with antibodies to the G-protein (transducin, Gt) from the photoreceptor system. Two proteins, Gs and Gi, can be distinguished by their respective abilities to stimulate or inhibit adenylate cyclase. The activated alpha subunits of Gt and a fourth member of the family, Go, did not affect this enzyme. Gt was shown to be unique in its ability to stimulate cGMP-dependent phosphodiesterase. While functionally diverse, the G-proteins were shown to have some common antigenic properties. Antibodies directed against the beta subunit of Gt recognize the beta 36 subunits of all preparations but not a putative second beta 35 subunit. Antibodies specific for the alpha subunit of Gt did not recognize other alpha subunits when immune blots from sodium dodecyl sulfate gels were examined. However, Go alpha, but not Gs alpha or Gi alpha, reacted strongly with the antibodies when the native subunit was spotted directly. This suggests that Go alpha and Gt alpha have homologous structural determinants. An antiserum that recognized Gt gamma did not recognize gamma subunits from other sources. These data support the proposed diversity of function and similarity of structure among the four G-proteins. The alpha and potentially gamma subunits appear to be responsible for the specificity of function. 相似文献
11.
In the present study the occurrence and localization of urotensin I (UI, a corticotropin releasing factor-like peptide) in the CNS of Aplysia californica were investigated by immunocytochemistry and radioimmunoassay. The RIA cross-reactivity pattern indicated that the UI antiserum used recognized an epitope in the C-terminal region of the UI, but it did not cross-react with mammalian corticotropin-releasing factor (CRF) and partially recognized sauvagine (SVG, a frog CRF-like peptide). The use of CRF-specific and sauvagine-specific antisera failed to give positive immunostaining. The application of UI antiserum (which does not cross-react with CRF in RIA) gave a positive staining, which was blocked by synthetic sucker (Catostomus commersoni) UI, but not by rat/human CRF (10 microM). On the basis of immunostaining and RIA parallel to fish UI displacement curves of cerebral ganglia extracts, the unknown UI/CRF-like substance in the Aplysia ganglia is likely to have greater homology with sucker UI than with the known CRF peptides. Urotensin I-immunoreactive (UI-ir) neurons were seen mainly in the F neuron clusters, located in the midline and rostrodorsal portion of the cerebral ganglia. Few UI-ir neurons were also found in the C and D neuron clusters of the cerebral ganglia, as well as in the left pleural and abdominal ganglia. In addition, numerous fine and coarse, and beaded UI-ir fibers were found in the cerebral commissure. UI-ir fibers were also seen in the neuropile of the buccal, pedal and pleural ganglia, and abdominal ganglion. A cuff-like arrangement of UI-ir fibers was seen in the supralabial nerves.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
13.
Src family kinases (SFKs) are key factors in the process of coupling signals from the cell surface to intracellular machinery and critically involved in the regulation of many neural functions mediated through growth factors, G-protein-coupled receptors or ligand-gated ion channels. The three minireviews here focus on recent findings dealing with the regulation of N-methyl-d-aspartate (NMDA) receptors by SFKs. 相似文献
14.
Pinin (pnn) is an SR-related protein that is ubiquitously expressed in most cell types and functions in regulating pre-mRNA
splicing and mRNA export. Previously, we demonstrated that pnn is expressed in all tissues during mouse embryonic development
with highest levels of expression in the central nervous system (CNS). Here we show that pnn and other SR proteins including
SC35 are differentially expressed in the adult mouse CNS, displaying cell type-specific distribution patterns. Immunohistochemical
analysis of whole-brain sections showed that levels of pnn and SR proteins expression were very low or nonexistent in the
corpus callosum and white matter of cerebellum and spinal cord. Double-immunostaining with antibodies specific to neuron or
glial cells showed that most astrocytes and microglia expressed neither pnn nor SR proteins. In contrast, oligodendrocytes
and neurons expressed moderate and high levels, respectively, of both pnn and SR proteins. These results suggest that astrocytes
are unique among cell types of neuroblast origin in terms of expression SR family proteins. Our results pave the way for future
studies of the functional roles of pnn and SR family proteins in adults. 相似文献
15.
A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system 总被引:2,自引:0,他引:2
Leucine-rich repeat containing proteins are involved in protein-protein interactions and they regulate numerous cellular events during nervous system development and disease. Here we have isolated and characterized a new four-membered family of genes from human and mouse, named LRRTMs, that encode putative leucine-rich repeat transmembrane proteins. Human and mouse LRRTMs are highly conserved, and orthologous genes exist in other vertebrates but not in invertebrates. All LRRTMs, except LRRTM4, are located in the introns of different alpha-catenin genes, suggesting coevolution of these two gene families. We show by in situ hybridization and RT-PCR that LRRTM mRNAs are predominantly expressed in the nervous system and that each LRRTM possesses a specific, partially nonoverlapping expression pattern. The structure and expression profile of LRRTM mRNAs suggest that they may have a role in the development and maintenance of the vertebrate nervous system. 相似文献
16.
Methyl-CpG binding proteins in the nervous system 总被引:4,自引:0,他引:4
17.
Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca2+ stores and activate Ca2+ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD+ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase. 相似文献
18.
19.
Robert W. Berry 《Developmental neurobiology》1979,10(5):499-508
The possibility that proteins reaching the abdominal ganglion of Aplysia by axonal transport from the circumesophageal ganglia might be subject to secretion in that structure was examined. Transported labeled protein was found to be released from the abdominal ganglion; such release was enhanced by exposure to a high K+ medium and by electrical stimulation of the transporting axons. Stimulation of release was inhibited by lowering the Ca2+/Mg2+ ratio of the medium. The released material is predominantly of 1–2000 daltons in molecular weight and appears to have been derived from a group of transported peptides of about the same size. The possibility is raised that these data may reflect the existence of a peptidergic second-order neurosecretory pathway in this nervous system. 相似文献
20.
Neurons of the circumesophageal ganglia of Aplysia synthesize 1-2000 dalton peptides and subject them to axonal transport in large quantities in the pleuro-visceral connective and pedal nerves. Most of the protein transported in the connective nerves accumulates in the abdominal ganglion, although some passes out its peripheral nerves. Autoradiography revealed no evidence for terminations of the transporting axons in possible neurohemal areas of this ganglion. It is suggested that these data reflect the existence of a pathway mediating the “directed delivery” of neural peptides in this nervous system. 相似文献