首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic deubiquitination of mono-ubiquitinated nucleosomal histone H2A (uH2A) and H2B (uH2B) is closely associated with mitotic chromatin condensation, although the function of this histone modification in cell division remains ambiguous. Here we show that rapid and extensive deubiquitination of nucleosomal uH2A occurs in Jurkat cells undergoing apoptosis initiated by anti-Fas activating antibody, staurosporine, etoposide, doxorubicin and the proteasome inhibitor, N-acetyl-leucyl-leucyl-norlucinal. These diverse apoptosis inducers also promoted the accumulation of slowly migrating, high molecular weight ubiquitinated proteins and depleted the cellular pool of unconjugated ubiquitin. In apoptotic cells, ubiquitin was cleaved from uH2A subsequent to the appearance of plasma membrane blebbing, and deubiquitination of uH2A closely coincided with the onset of nuclear pyknosis and chromatin condensation. Nucleosomal uH2A deubiquitination, poly (ADP-ribose)polymerase (PARP) cleavage and chromatin condensation were prevented in cells challenged with apoptosis inducers by pretreatment with the pan-caspase inhibitor, zVAD-fmk, or by over-expressing anti-apoptotic Bcl-xL protein. These results implicate a connection between caspase cascade activation and nucleosomal uH2A deubiquitination. Transient transfection of 293 cells with the gene encoding Ubp-M, a human deubiquitinating enzyme, promoted uH2A deubiquitination, while an inactive mutated Ubp-M enzyme did not. However, Ubp-M-promoted deubiquitination of uH2A was insufficient to initiate apoptosis in these cells. We conclude that uH2A deubiquitination is a down-stream consequence of procaspase activation and that unscheduled cleavage of ubiquitin from uH2A is a consistent feature of the execution phase of apoptosis rather than a determining or initiating apoptogenic event. Nucleosomal uH2A deubiquitination may function as a cellular sensor of stress in situations like apoptosis through which cells attempt to preserve genomic integrity.  相似文献   

2.
H1 phosphorylation has been studied through the precise nuclear division cycle of Physarum polycephalum. The number of sites of phosphorylation of Physarum H1 is very much larger than the number of sites reported for mammalian H1 molecules which is consistent with the larger molecular weight of Physarum H1. At metaphase all of the Physarum H1 molecules contain 20-24 phosphates. Immediately following metaphase, these metaphase-phosphorylated H1 molecules undergo rapid dephosphorylation to give an intermediate S phase set of phosphorylated H1 molecules containing 9-16 phosphates. Progressing into S phase newly synthesized H1 is phosphorylated and eventually merges with the old dephosphorylated H1 to give a ladder of bands 1-20. By the end of S phase or early G2 phase, there is a ladder of bands 1-16 all of which undergo phosphate turnover. Further into G2 phase the bands move to higher states of phosphorylation, and by prophase all of the H1 molecules contain 15-24 phosphates which increases to 20-24 phosphates at metaphase. These results support the proposals that H1 phosphorylation is an important factor in the process of chromosome condensation through G2 phase, prophase to metaphase.  相似文献   

3.
Nuclear matrices and chromosome scaffolds were obtained by digesting and extracting, respectively with DNase Ⅰ and 2 mol/L NaC1, the nuclei and chromosomes isolated from the plasmedia of Physarum polycephalum Schw. The results of the indirect immunofluorescence of tacit antiactin antibody as immunomarker indicated that the nuclear matrices and chromosome scaffolds both had positive reaction with the antibody. The results of the indirect immunodotting experiment further verified the presence of actin antibody in their constituent. Protein A-colloidal gold immunoelectron microscopy technique revealed that gold particles were distributed in the interphase nuclei and metaphase chromosomes. The above results showed that actin is a constituent of the nuclear matrix and chromosome scaffold of P. polycephalum.  相似文献   

4.
肌动蛋白是多头绒泡菌细胞核骨架和染色体骨架的组成成分   总被引:14,自引:0,他引:14  
自多头绒泡菌(Physarum polycephalum Schw.)的原质团中分离细胞核和染色体,分别经DNaseⅠ消化和2 mol/L NaCl抽提后制备成细胞核骨架和染色体骨架。以抗肌动蛋白的抗体作一抗、FITC标记的羊抗兔IgG抗体作二抗进行的间接免疫荧光实验结果显示,细胞核骨架和染色体骨架都分别与抗体呈阳性反应。间接免疫斑点印迹实验结果进一步证实,细胞核骨架和染色体骨架的蛋白质成分中存在与肌动蛋白抗体呈阳性显色反应的抗原。以抗肌动蛋白的抗体作一抗、金颗粒标记的蛋白A作二抗的间接免疫电镜实验结果表明,在实验组间期细胞核的核仁、集缩染色质和核基质以及中期染色体上都有很多金颗粒分布。上述结果证明,肌动蛋白是多头绒泡菌细胞核和染色体及其骨架的组成成分。  相似文献   

5.
The dissociation curves of histone H1 from chromatin in interphase and metaphase nuclei from Physarum polycephalum have been determined using CaCl2 as dissociating agent. H1 is less strongly bound to metaphase chromosomes than to interphase chromatin. However, no differences could be detected in the binding of Hl to early S, late S or G2 phase chromatin. The number of CaCl2 molecules involved in binding one H1 molecule to chromatin was reduced from 5 in interphase to 4 in metaphase. The non-electrostatic contribution to the free-energy of binding was small in both cases. A comparison of the binding properties of H1 to sheared chromatin, native chromatin and metaphase chromosomes suggests that the electrostatic binding functions of H1 are completely satisfied within the nucleosome and that further electrostatic interactions are not involved in folding the nucleosomal fibre into the 300 A "solenoid" or the more tightly folded metaphase chromosome.  相似文献   

6.
The nuclei and chromosomes were isolated from plasmodia of Physarum polycephalum.The nuclear matrix and chromosome scaffold were obtained after the DNA and most of the proteins were extracted with DNase I and 2 M NaCl.SD-PAGE analyses revealed that the nuclear matrix and chromosome scaffold contained a 37 kD polypeptide which is equivalent to tropomyosin in molecular weight.Immunofluorescence observations upon slide preparations labeled with anti-tropomyosin antibody showed that the nuclear matrix and chromosome scaffold emanated bright fluorescence,suggesting the presence of the antigen in them.Immunodotting results confirmed the presence of tropomyosin in the nuclear matrix and chromosome scaffold.Immunoelectron microscopic observations further demonstrated that tropomyosin was dispersively distributed in the interphase nuclei and metaphase chromosomes.  相似文献   

7.
The orderly progression of eukaryotic cells from interphase to mitosis requires the close coordination of various nuclear and cytoplasmic events. Studies from our laboratory and others on animal cells indicate that two activities, one present mainly in mitotic cells and the other exclusively in G1-phase cells, play a pivotal role in the regulation of initiation and completion of mitosis, respectively. The purpose of this study was to investigate whether these activities are expressed in the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony. Extracts were prepared from plasmodia in various phases of the cell cycle and tested for their ability to induce germinal vesicle breakdown and chromosome condensation after microinjection into Xenopus laevis oocytes. We found that extract of cells at 10-20 min before metaphase consistently induced germinal vesicle breakdown in oocytes. Preliminary characterization, including purification on a DNA-cellulose affinity column, indicated that the mitotic factors from Physarum were functionally very similar to HeLa mitotic factors. We also identified a number of mitosis-specific antigens in extracts from Physarum plasmodia, similar to those of HeLa cells, using the mitosis-specific monoclonal antibodies MPM-2 and MPM-7. Interestingly, we also observed an activity in Physarum at 45 min after metaphase (i.e., in early S phase since it has no G1) that is usually present in HeLa cells only during the G1 phase of the cell cycle. These are the first studies to show that maturation-promoting factor activity is present in Physarum during mitosis and is replaced by the G1 factor (or anti-maturation-promoting factor) activity in a postmitotic stage. A comparative study of these factors in this slime mold and in mammalian cells would be extremely valuable in further understanding their function in the regulation of eukaryotic cell cycle and their evolutionary relationship to one another.  相似文献   

8.
多头绒泡菌染色体构建过程的形态学研究   总被引:4,自引:0,他引:4  
以同步核内有丝分裂的多头绒泡菌(Physarum polycephalum)原质团为材料,在有丝分裂周期中连续取材,按常规方法制备超薄切片,在电镜下研究了染色体形态构建的整个过程。有丝分裂前期,首先是G_2期凝集的染色质块逐渐解集缩成为松散状,染色质在松散的同时逐渐改组成直径为80~150nm的松散染色线结构。接着是在松散的染色线上形成一些电子密度高的集缩区,随着集缩区的增多和扩展,染色线缩短变粗,最后形成直径300~350nm的染色体。上述两个过程各需30min左右。与上述过程同时发生的是,核仁由中央位置逐渐移向边缘,前期50min左右时在近核膜处呈团块状解体。染色体形态构建的整个过程约需1h,可分为染色质的松散改组和集缩两个连续的步骤,25~30nm染色质纤维是这一过程中能分辨的最细的形态单位。  相似文献   

9.
类Cyclin A蛋白在多头绒泡菌细胞周期中的定位研究   总被引:1,自引:1,他引:0  
李晓雪  李桂英  邢苗 《遗传学报》2003,30(5):479-484
采用免疫电镜技术对多头绒泡菌(Physarum polycephalum)是否含有类CyclinA蛋白以及该蛋白在有丝分裂周期各时相的定位进行了研究;并以抗CyclinA抗体封闭细胞内源类CyclinA蛋白的方法,探讨类CyclinA蛋白在多头绒泡菌细胞周期中的作用。免疫电镜结果表明,经抗CyclinA抗体标记的实验组细胞中的金颗粒密度明显高于对照组,说明多头绒泡菌细胞中含有类CyclinA蛋白。实验组样品中,细胞核的金颗粒密度很高,而细胞质的金颗粒密度与对照组的相仿,说明多头绒泡菌细胞中的类CyclinA蛋白是核蛋白。细胞核的金颗粒密度在S期最高,G2期的次之,早中期时明显降低,中期和中期以后与对照组的相近。这种金颗粒密度的变化反映了类CyclinA蛋白在细胞周期中的含量变化。以抗CyclinA抗体分别处理S期和G2期的多头绒泡菌细胞,处理后的细胞分别停滞在原来的时相,细胞核形态变得不规则,核内有空洞现象。处于有丝分裂前期的多头绒泡菌细胞经抗CyclinA抗体处理后,细胞核出现畸变。抗体处理结果说明类CyclinA蛋白是参与多头绒泡菌细胞周期多个转换过程调控的种重要蛋白,主要在S期/G2期和G2期/M期的转换以及走出有丝分裂期的进程中发挥作用。  相似文献   

10.
以自然同步化的多头绒泡菌(Physarum polycephalum L.)为材料,经抗cyclin B1抗体的免疫印迹和免疫电镜实验观察结果表明,多头绒泡菌中含有类cyclin B1蛋白,该蛋白的含量和细胞内位置在细胞周期进程中存在着动态变化:类cyclin B1蛋白在S期开始合成并在细胞质中积累,G2晚期开始进入细胞核,该蛋白在细胞质和细胞核中含量逐渐增加,有丝分裂中期时达最大值,后末期时骤然消失.在G2晚期到有丝分裂中期期间,类cyclin B1蛋白既是细胞核蛋白又是细胞质蛋白,细胞质是类cyclin B1蛋白的主要存在区域,细胞核中的类cyclin B1蛋白主要结合于染色体和核仁区域.  相似文献   

11.
多头绒泡菌PhysarumpolycophalumSchw的营养生长阶段为没有细胞壁的原生质团(合胞体),内部众多的细胞核进行着同步的核内有丝分裂,本文电镜下研究了细胞核在有丝分裂周期中的结构变化。有丝分裂前期,染色质经松散改组和集缩形成染色体,核仁由中央移向边缘,并在近核膜处解体;中期核膜不消失,在核内形成纺锤体,核仁解体后的物质是不规则状散在于核内;有丝分裂后核膜的破裂处重新愈合,染色体解集缩成染色质,分散的核仁物质逐渐合并形成新的核仁。  相似文献   

12.
王晓光  曾宪录 《菌物学报》2002,21(4):585-591
电镜原位观察结合图象分析研究了多头绒泡菌Physarum polycephalum Schw间期细胞核和中期染色体中银染蛋白的形状、大小和分布。结果看到,银染蛋白主要呈颗粒状存在于间期细胞核和中期染色体中。银粒的大小不一,分布不均匀。间期细胞核中存在众多直径在5~15nm的银粒,其中10nm以上的较大银粒主要分布于核仁,集缩染色质和核基质部分10nm以上银粒不多。中期细胞核内10nm以上的较大银粒主要分布于染色体中。染色体中除含有一些较大银粒外,多数银粒的直径为5~10nm。本文结果提示,构成染色体骨架的嗜银蛋白可能来自间期细胞核的染色质、核基质和核仁。  相似文献   

13.
Purified antibodies from an antiserum against S-phase proteins of the myxomycete Physarum polycephalum were attached to protein-A-Sepharose CL-4B. A late G2-phase extract that contained a mitosis-stimulating protein was applied to this immunoadsorbent, and the mitosis-stimulating protein was enriched by a factor of ten. This protein, which is present in the cell in low amounts, is synthesized in late G2 phase and obviously degraded in a later stage of the cycle. Immunoadsorption of a G2-phase extract with anti-S-antibodies decreased the 700 main proteins to 20 as demonstrated by two-dimensional gel electrophoresis. No difference in protein pattern could be observed on two-dimensional gels between S-phase and G2-phase extracts before and after immunoadsorption with anti-S-antibodies. This indicates that there are no G2-phase-specific proteins among the 700 most abundant proteins of Physarum polycephalum.  相似文献   

14.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

15.
Cobb J  Miyaike M  Kikuchi A  Handel MA 《Chromosoma》1999,108(7):412-425
Mechanisms of chromosome condensation and segregation during the first meiotic division are not well understood. Resolution of recombination events to form chiasmata is important, for it is chiasmata that hold homologous chromosomes together for their oppositional orientation on the meiotic metaphase spindle, thus ensuring their accurate segregation during anaphase I. Events at the centromere are also important in bringing about proper attachment to the spindle apparatus. This study was designed to correlate the presence and activity of two proteins at the centromeric heterochromatin, topoisomerase II alpha (TOP2A) and histone H3, with the processes of chromosome condensation and individualization of chiasmate bivalents in murine spermatocytes. We tested the hypothesis that phosphorylation of histone H3 is a key event instigating localization of TOP2A to the centromeric heterochromatin and condensation of chromosomes as spermatocytes exit prophase and progress to metaphase. Activity of topoisomerase II is required for condensation of chromatin at the end of meiotic prophase. Histone H3 becomes phosphorylated at the end of prophase, beginning with its phosphorylation at the centromeric heterochromatin in the diplotene stage. However, it cannot be involved in localization of TOP2A, since TOP2A is localized to the centromeric heterochromatin throughout most of meiotic prophase. This observation suggests a meiotic function for TOP2A in addition to its role in chromatin condensation. The use of kinase inhibitors demonstrates that phosphorylation of histone H3 can be uncoupled from meiotic chromosome condensation; therefore other proteins, such as those constituting metaphase-promoting factor, must be involved. These results define the timing of important meiotic events at the centromeric heterochromatin and provide insight into mechanisms of chromosome condensation for meiotic metaphase.  相似文献   

16.
以同步化培养的多头绒泡菌(Physarum poldycephalum Schw.)原生质团为材料,应用整体银染技术,电镜下研究了核仁在细胞周期中的超微结构变化。结果变化:核仁成熟时比较大,位于细胞核中央,核仁内可区分出纤维中心、密集纤维成分和颗粒成分等。前期时,核仁向边缘移动,前期末在近核膜处解体,解体的核仁物质主要呈团块状散开。中期时,解体的核仁物质位于细胞核中央染色体区域的周围,染色体上没有特异的银染区域,染色体周边也看不到银染的“鞘”状结构,但在染色体中可见一些散在的银染大颗粒。末期时,核仁物质与染色体一起到达两极,在子细胞核中与正在解集缩的染色质共存一起,以后核仁物质逐渐汇合并与染色质分开。大约在有丝分裂结束120min后,在细胞核中形成一候 中央位置的大核仁,结果提示,低等真核生物的核仁结构和周期变化与高等真核生物的不完全相同。  相似文献   

17.
The dynamic changes of nucleolar ultrastructure in the cell cycle of Physarum polycephalum Schw. were studied by an en bloc silver-staining method. The results showed that the nucleolus was large in size and situated in the center of the nucleus in late G2-phase, and the fibrillar centers, dense fibrillar components and granular components could be observed in the nucleolus. During prophase, the nucleolus moved towards the periphery of the nucleus and in late prophase disintegrated near the nuclear envelope. In metaphase, the disintegrated nucleolar components were dispersed in masses and located at the periphery of the chromosomal region of the nucleus. No specifically silver-stained area and argentophilic protein sheath were observed on the chromosomes, but there were some big dispersed silver particles within the chromosomes. During telophase the nucleolar components moved towards the two poles along with the chromosomes and co-existed with the decondensing chromatin in daughter nuclei. The nucleolar components then gradually converged with one another and separated from the chromatin. A big nucleolus was formed in the nucleus about 120 min after the completion of mitosis.  相似文献   

18.
19.
The 13 S condensin complex plays a crucial role in the condensation and segregation of the two sets of chromosomes during mitosis in vivo as well as in cell-free extracts. This complex, conserved from yeast to human, contains a heterodimer of structural maintenance of chromosome (SMC) family proteins and three additional non-SMC subunits. We have investigated the expression of the non-SMC condensin component XCAP-D2 in Xenopus laevis oocytes. When studied during meiotic maturation, XCAP-D2 starts to accumulate at the time of germinal vesicle breakdown and reaches its maximal amount in metaphase II oocytes. This accumulation is specifically blocked by injection of antisense oligonucleotides. XCAP-D2 antisense-injected oocytes progress normally through meiosis until metaphase II. At this stage, however, chromosomes exhibit architecture defaults, and resolution of sister chromatids is impaired. Surprisingly, in mitotic extracts made from XCAP-D2 knocked-down oocytes, sperm chromatin normally condenses into compacted chromosomes, whereas the amounts of both free and chromosome-bound XCAP-D2 are markedly reduced. This apparent discrepancy is discussed in light of current knowledge on chromosome dynamics.  相似文献   

20.
Nuclei in G2 phase of the slime mold Physarum polycephalum, when transplanted, by plasmodial coalescence, into an S-phase plasmodium, failed to start another round of DNA synthesis. In the reciprocal combination, S-phase nuclei in a G2-phase host continued DNA synthesis for several hours without appreciable decrease in rate. It is suggested that the beginning of DNA replication is determined by an event, either during or shortly after mitosis, which renders the chromosomes structurally competent for DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号