首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

2.
The molecular mass of rhodanese from the mitochondrial fraction of frog Rana temporaria liver, equaling 8.7 kDa, was determined by high-performance size exclusion chromatography (HP-SEC). The considerable difference in molecular weight and the lack of common antigenic determinants between frog liver rhodanese and bovine rhodanese suggest the occurrence of different forms of this sulfurtransferase in the liver of these animals.  相似文献   

3.
Localization of the activity of both the dehydrogenase and oxidase forms of xanthine oxidoreductase were studied in biopsy and postmortem specimens of various human tissues with a recently developed histochemical method using unfixed cryostat sections, poly-(vinyl alcohol) as tissue stabilizator, 1-methoxyphenazine methosulphate as intermediate electron acceptor and Tetranitro BT as final electron acceptor. High enzyme activity was found only in the liver and jejunum, whereas all the other organs studied showed no activity. In the liver, enzyme activity was found in sinusoidal cells and both in periportal and pericentral hepatocytes. In the jejunum, enterocytes and goblet cells, as well as the lamina propria beneath the basement membrane showed activity. The oxidase activity and total dehydrogenase and oxidase activity of xanthine oxidoreductase, as determined biochemically, were found in the liver and jejunum, but not in the kidney and spleen. This confirmed the histochemical results for these organs. Autolytic rat livers several hours after death were studied to exclude artefacts due to postmortem changes in the human material. These showed loss of activity both histochemically and biochemically. However, the percentage activity of xanthine oxidase did not change significantly in these livers compared with controls. The findings are discussed with respect to the possible function of the enzyme. Furthermore, the low conversion rate of xanthine dehydrogenase into xanthine oxidase during autolysis is discussed in relation to ischemia-reperfusion injury.  相似文献   

4.
In previous studies on the rhodanese activity of bovine liver mitochondria, we have shown that in addition to activity observed in the soluble protein fraction, there is rhodanese activity that is bound to the mitochondrial membrane. The latter activity accounts for as much as 40% of the total and, in situ, is associated in a multiprotein complex that forms iron-sulfur centers. In the present studies, we have investigated the rhodanese activity of bovine heart muscle. We have found that the major part of this enzyme activity is localized in the mitochondria and, further, that at least 25% of the total rhodanese activity of heart mitochondria is membrane-bound. As in liver tissue, the heart activity at least in part is associated in a multiprotein complex that forms iron-sulfur centers. Upon purification of the heart rhodanese in the soluble protein fraction, there is a 10- to 30-fold decrease inK m values for the standard assay substrates thiosulfate and cyanide ions. These observations are consistent with the interpretation that there are activated and deactivated (low activity) forms of the heart enzyme in crude extracts, but only the activated form survives purification. The present results, together with our recent finding that liver mitochondrial rhodanese is subject to phosphorylation, lend support to our proposal that the rhodaneses serve as converter enzymes which regulate the rate of electron transport through sulfuration of respiratory chain components. The rhodaneses, in turn, are controlled by protein kinases and the local ATP concentration.  相似文献   

5.
Summary The biosynthesis of rhodanese was studied in human hepatoma cell lines by immunoblotting and pulselabeling experiments using polyclonal antibodies raised against the bovine liver enzyme. Rhodanese, partially purified from human liver, showed an apparent molecular weight of 33,000 daltons, coincident with that of rhodanese from Hep 3B cells. After pulse labeling of Hep 3B cells both at 37°C and 25°C, rhodanese in the cytosol fraction exhibited the same molecular weight as the enzyme isolated from the particulate fraction containing mitochondria. Moreover, newly synthesized rhodanese from total Hep 3B RNA translation products showed the same electrophoretic mobility as rhodanese from Hep 3B cells. These results suggest that rhodanese, unlike most mitochondrial proteins, is not synthesized as a higher molecular weight precursor.  相似文献   

6.
1. The investigators studied annual changes in rhodanese activity in mitochondria and cytosol of frog liver cells (Rana temporaria) and found that the value of the enzyme-specific activity was higher in mitochondria than in cytosol, showing significant seasonal fluctuations. 2. The character of changes in the rhodanese activity in mitochondria, regardless of the sex of the studied animal, was demonstrated to be dependent upon the seasonal changes in frog thyroid gland function. 3. In the supernatant fraction of R. temporaria liver homogenate, seasonal changes of rhodanese specific activity seemed to be related to changes in hepatic function.  相似文献   

7.
Bovine liver rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) was prepared in dilute solutions and subjected to conditions that led to a time-dependent loss of enzyme activity. The rate of this activity loss was found to be dependent upon the sulfur substitution state of the enzyme, and the presence or absence of the substrates, thiosulfate and cyanide. In the absence of excess substrates, free enzyme (E), and the covalent intermediate form of the enzyme bearing a divalent sulfur atom in the active site (ES), are of approximately equal functional stability. In comparison, E, in the presence of excess cyanide, was markedly more labile, while ES, supported by 10-50 mM thiosulfate, showed no significant loss of activity under any of the conditions tested. All the enzyme solutions were shown to be losing assayable protein from solution. However, it was demonstrated that, for rhodanese in the E form, the amount of protein lost was insufficient to account for the activity lost, and a marked decline in specific activity was observed. Enzyme in the ES form, whether supported by additional thiosulfate or not, did not decline in the specific activity, though comparable protein loss did occur from these solutions. Intrinsic fluorescence measurements of rhodanese in the ES form, before and after removal of the persulfide sulfur through the addition of cyanide, indicated that loss of enzymic activity was not accompanied by loss of the bound sulfur atom. Therefore, the stabilizing effect observed with thiosulfate could not be explained simply by its ability to maintain enzyme in the sulfur-substituted state. Since the concentration of thiosulfate employed in these experiments was insufficient to maintain all the enzyme in ES.S2O3 form, thiosulfate was acting as a chemical reagent rather than a substrate in stabilizing enzyme activity.  相似文献   

8.
L-cysteine desulfuration was examined in tissues of Rana temporaria, in October and January. The activities of 3-mercaptopyruvate sulfurtransferase (MPST), cystathionine gamma-lyase (CST) and rhodanese were primarily concentrated in frog liver and kidney. The values of CST and rhodanese activity, as well as sulfane sulfur compounds levels fell in the range characteristic of rat. For each of the investigated tissues changes noted in the enzymatic activities and in the level of glutathione (GSH), protein-bound cysteine (PbCys) and sulfane sulfur compounds were dependent on the month in which the determination was performed, and on the character of the tissue. In such tissues as the liver or gonads, high GSH levels and high activities of MPST (in the liver) or MPST and rhodanese (in the gonads) seemed to accompany protein biosynthesis during hibernation. PbCys, the level of which was consequently diminished in all tissues in January, compensated the absence of exogenous cysteine. A significantly reduced GSH level in the brain in January seemed to be correlated with decreased requirements of the tissue for this important natural antioxidant at diminished thyroid hormones levels in the serum and minimal oxygen consumption during the hibernation. In the kidney, the possible participation of sulfane sulfur compounds in detoxification processes requires elucidation, similarly as in protection against cellular oxidative stress at extremely low levels of GSH.  相似文献   

9.
Intracellular distribution of fumarase in various animals   总被引:2,自引:0,他引:2  
The subcellular distribution of fumarase was investigated in the liver of various animals and in several tissues of the rat. In the rat liver, fumarase was predominantly located in the cytosolic and mitochondrial fractions, but not in the peroxisomal fraction. The amount of fumarase associated with the microsomes was less than 5% of the total enzyme activity. The investigation of the intracellular distribution of hepatic fumarase of the rat, mouse, rabbit, dog, chicken, snake, frog, and carp revealed that the amount of the enzyme located in the cytosol was comparable to that in the mitochondria of all these animals. The subcellular distribution of the enzyme in the kidney, brain, heart, and skeletal muscle of rat, and in hepatoma cells (AH-109A) was also investigated. Among these tissues, the brain was the only exception, having no fumarase activity in the cytosolic fraction, and the other tissues showed a bimodal distribution of fumarase in the cytosol and the mitochondria. The mitochondrial fumarase was predominantly located in the matrix. About 10% of the total fumarase was found in the outer and inner membrane, although it was unclear whether this fumarase was originally located in these fractions. No fumarase activity was detected in the intermembranous space.  相似文献   

10.
Rhodanese (EC 2.8.1.1.) from bovine liver contains four reduced cysteine groups. The –SH group of cysteine 247, located in a rhodanese active centre, transfers sulfane sulfur in a form of hydrosulfide (–S–SH) from appropriate donors to nucleophilic acceptors. We aimed to discover whether S-nitrosylation of critical cysteine groups in rhodanese can inhibit activity of the enzyme by covalent modification of –SH groups.

The inhibition of rhodanese activity was studied with the use of a number of nitric oxide (NO) donors. We have successfully confirmed using several methods that the inhibition of rhodanese activity is a result of the formation of stable S-nitrosorhodanese.

Low molecular weight NO donors, such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO), inactivate rhodanese and are much more effective in this regard (100% inhibition at 2.5 mM) than such known inhibitors of this enzyme, as N-ethylmaleimide (NEM) (25 mM < 50%) or sulfates(IV) (90% inhibition at 5 mM). On the other hand, sodium nitroprusside (SNP) and nitrites inhibit rhodanese activity only in the presence of thiols, which suggests that S-nitrosothiols (RSNO) also have to participate in this reaction in this case.

A demonstration that rhodanese activity can be inhibited as a result of S-nitrosylation suggests the possible mechanism by which nitric oxide may regulate sulfane sulfur transport to different acceptors.  相似文献   


11.
The aim of the experiments was to evaluate the effect of administration of cysteine, methionine, thiocystine, and thiosulphate upon the activity of mercaptopyruvate sulphurtransferase (MPST) and rhodanese in mouse liver. It was found that rhodanese activity increased following thiocystine and methionine administration and showed a smaller increase after cysteine and thiosulphate. The MPST activity significantly increased after cysteine and to a lesser extent after thiocystine and thiosulphate. On the other hand, methionine seemed to exert no effect upon the enzymatic activity. The results suggested that methionine metabolic cycle in mouse liver proceeded from cysteine to sulphane sulphur as thiocystine and, therefore, these three compounds increased rhodanese activity. Thiosulphate seemed rather to be involved in metabolic changes related to maintaining the stability of the physiological thiosulphate level and activated both the enzymes.  相似文献   

12.
Bovine mitochondrial rhodanese is a phosphoprotein   总被引:1,自引:0,他引:1  
The mitochondrial sulfurtransferase, rhodanese, has been analyzed for phosphate content. Significant amounts of protein-bound phosphate (30-40%) were measured in the six rhodanese preparations examined. Chromatographic experiments followed by phosphate analyses done on two of the preparations indicated that rhodanese A and rhodanese B, two enzyme forms that were previously resolved on DEAE-Sephadex by Blumenthal and Heinrikson (Blumenthal, K., and Heinrikson, R. L. (1971) J. Biol. Chem. 240, 2430-2437), correspond to dephospho- and phosphorhodanese, respectively. The phosphorylation of rhodanese by [gamma-32P]ATP is catalyzed by cAMP-dependent protein kinase. The stoichiometry of 32P incorporation based on the amount of dephosphorhodanese in the enzyme preparation approaches 1.0. The phosphorylation site is accessible in rhodanese that is free of substrate sulfur but not in the covalent enzyme-sulfur intermediate which is formed as an obligatory step during the course of catalysis. Because the cellular localization of cAMP-dependent protein kinase makes it unlikely as the physiologic modulator of rhodanese activity, liver extracts have been tested for a rhodanese kinase that does not require cAMP. Rhodanese kinase activity which is independent of cAMP is observed in extract fractions resolved by Affi-Gel Blue chromatography and freed from endogenous rhodanese by chromatography on Sephadex G-100. These results together with previous findings from this and other laboratories have led to a working model of a bicyclic cascade system that can modulate the rate of mitochondrial respiration. The essence of the model is a transduction and amplification of cellular signals into the altered covalent phosphorylation of rhodanese. Rhodanese, in turn, serves as a converter enzyme which directly alters the rate of the respiratory chain and, thus, ATP production by the reversible sulfuration of key iron-sulfur centers. The model, when expanded to include signal pathways initiated by hormones or neurotransmitters, represents a mechanism by which mitochondria can recognize and meet changing energy demands.  相似文献   

13.
The reliability of the enzyme histochemical technique, for the demonstration of arylsulphatase activity, using 6-bromo-2-naphthylsulphate as a substrate, is biochemically tested by using partly purified lysosome and microsome preparations from fresh human placenta tissue. Microsomes from frozen placenta with an arylsulphatase deficiency and lysosomes from rat liver, are also investigated. For the biochemical test methods, 6-bromo-2-naphthylsulphate and p-nitrocatecholsulphate are used as substrates. Under similar reaction conditions, varying the pH of the incubation medium and adding inhibitors or activators, the histochemical and biochemical reactions are compared. The results of this study show that the enzyme histochemical technique--except for some limitations--is suitable for the demonstration of microsomal arylsulphatase in cryostat sections.  相似文献   

14.
Activities of cyanide metabolizing enzymes were measured in various subcellular fractions and regions in the central nervous system. Brain rhodanese and liver beta-mercaptopyruvate sulfurtransferase showed a slight decrease in activity after death. The activity of beta-mercaptopyruvate sulfurtransferase was negligible in the rat brain, compared with that of rhodanese. A small amount of thiocyanate was produced from cyanide and beta-mercaptopyruvate in the human brain, probably due to contamination with red blood cells. Rhodanese activity was widely distributed in all the areas of nervous tissue examined. In the rat the olfactory bulb showed the highest rhodanese activity, and high activity was also observed served in the thalamus, septum, hippocampus, and dorsal part of the midbrain. Rhodanese activity was low in various parts of the cerebral cortex. The distribution pattern of rhodanese in post-mortem human brain was essentially similar to that in rat brain. The thalamus, amygdala, centrum semiovale, colliculus superior, and cerebellar cortex showed high rhodanese activity in the human brain. Rhodanese activity was detected in the spinal cord. Anterior horn showed the highest rhodanese activity in the cervical, thoracic, and lumbar cord. Most rhodanese activity in the rat brain was recovered in the mitochondrial fraction with the highest specific activity. Rhodanese activity was lower in spinal cords obtained from autopsied cases with amyotrophic lateral sclerosis than in those of control subjects. A significant decrease in rhodanese was observed in the posterior column of the cervical or thoracic cord, but the activity in the anterior horn did not differ significantly between the two groups.  相似文献   

15.
The level of glutathione and sulfane sulfur and sulfurtransferases activity in adult frogs Rana ridibunda were investigated after the exposure to 40 mg or 80 mg CdCl(2) L(-1) for 96 h or 240 h. Cd accumulation in the liver, kidneys and testes was confirmed, and the highest Cd level was found in the testes. In the liver, the exposure to Cd resulted in an increase of GSH level and the activity of rhodanese, while the activity of 3-mercaptopyruvate sulfurtransferase and cystathionase decreased. The kidneys and brain showed the elevated level of GSH and the activity of all investigated sulfurtransferases, as well as sulfane sulfur especially in brain. In such tissues as the testes, muscles and heart, the level of GSH and the activity of 3-mercaptopyruvate sulfurtransferase were significantly diminished. The increased level of sulfane sulfur was determined in the testes and muscles and the increased activity of rhodanese in the testes and the heart. These findings suggest the possible role of sulfane sulfur and/or sulfurtransferases in the antioxidation processes, which can be generated in cells by cadmium.  相似文献   

16.
The activities of the enzymes arginase and rhodanese were examined in homogenates of 13 mouse cell strains and 2 human cell strains after long cultivation of the cells in vitro. Three strains of mouse liver origin showed both high arginase and rhodanese activities in keeping with activities of the tissue of origin. Two strains of cells of human epithelial origin, HeLa and epidermis, were found to have high rhodanese activity but low arginase activity, the skin being almost devoid of it. Seven mouse fibroblast strains or substrains had moderate rhodanese activity and all except one of the strains had low arginase activity. Two of the fibroblast strains tested, NCTC 1745 and NCTC 2050, were derived from a single cell of a tumor appearing after injection of the high tumor producing strain NCTC 1742 into a mouse. The strain 1745 had 20 times and the strain 2050 had 400 times the arginase activity of the parent strain of cells. The findings imply a considerable biochemical variation in the three strains. Three mouse mammary carcinoma clones were devoid of arginase activity, but had considerable rhodanese activity.  相似文献   

17.
Summary The validity of the histochemical procedure for demonstrating catalase activity in cryostat sections of rat liver at the light-and electron-microscopical level was studied cytophotometrically. Incubations in the presence of 5 mm diaminobenzidine, 44 mm hydrogen peroxide and 2% polyvinyl alcohol performed on fixed cryostat sections resulted in the highest amounts of final reaction product precipitated in a fine granular form which was specific for catalase activity. Serial sections processed for electron microscopy indicated that the osmiophilic final reaction product was exclusively localized in the matrix and core of peroxisomes. The relationship between incubation time and the amounts of final reaction product generated by catalase activity as measured at 460 nm in mid-zonal areas of liver lobules showed non-linearity for the test-minus-control reaction because first-order inactivation of the enzyme occurred during incubation. Linearity of the test-minus-control reaction and section thickness was observed up to 8 m. Catalase in rat liver showed a Km value of 2.0 mm for its substrate hydrogen peroxide when the diaminobenzidine concentration was 5 mm. It is concluded that the procedure for demonstrating catalase activity in serial cryostat sections of rat liver at the light- and electron-microscopical level is specific and can be applied to quantitative purposes. This approach may be useful in pathology, when only small biopsies are available, when the tissue is heterogeneous, and when other histochemical markers also need to be studied in the same material.  相似文献   

18.
Summary The reliability of the enzyme histochemical technique, for the demonstration of arylsulphatase activity, using 6-bromo-2-naphthylsulphate as a substrate, is biochemically tested by using partly purified lysosome and microsome preparations from fresh human placenta tissue. Microsomes from frozen placenta with an arylsulphatase deficiency and lysosomes from rat liver, are also investigated. For the biochemical test methods, 6-bromo-2-naphthylsulphate and p-nitrocatecholsulphate are used as substrates. Under similar reaction conditions, varying the pH of the incubation medium and adding inhibitors or activators, the histochemical and biochemical reactions are compared. The results of this study whow that the enzyme histochemical technique — except for some limitations — is suitable for the demonstration of microsomal arylsulphatase in cryostat sections.  相似文献   

19.
Summary The effects of oestradiol treatment on arylsulphatase activity in the frog oviduct are reported. Oestradiol-induced changes were also investigated in ovariectomized and hypophysectomized animals. Under all the experimental conditions, hormonal treatment causes an increase in enzyme activity. This can be observed biochemically and also histochemically on frozen sections. Hypotheses are advanced to explain fluctuations in arylsulphatase activity.  相似文献   

20.
Abstract Neisseria gonorrhoeae is unable to grow with sulfate but can use thiosulfate as sole source of sulfur.
Thiosulfate sulfur transferase (TST) (rhodanese) activity was present in the cytoplasmic soluble fraction. In the same extract, thiosulfate reductase (TSR), trithionate reductase and tetrathionate reductase activities were also detected using hydrogen as electron donor in the presence of viologen dyes and hydrogenase from Desulfovibrio gigas .
The significance of and the possible relationship between these different activities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号