共查询到20条相似文献,搜索用时 0 毫秒
1.
Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution 总被引:1,自引:0,他引:1
Bookstein FL Gunz P Mitteroecker P Prossinger H Schaefer K Seidler H 《Journal of human evolution》2003,44(2):167-187
This study addresses some enduring issues of ontogenetic and evolutionary integration in the form of the hominid cranium. Our sample consists of 38 crania: 20 modern adult Homo sapiens, 14 sub-adult H. sapiens, and four archaic Homo. All specimens were CT-scanned except for two infant H. sapiens, who were imaged by MR instead. For each specimen 84 landmarks and semi-landmarks were located on the midsagittal plane and converted to Procrustes shape coordinates. Integration was quantified by the method of singular warps, a new geometric-statistical approach to visualizing correlations among regions. The two classic patterns of integration, evolutionary and ontogenetic, were jointly explored by comparing analyses of overlapping subsamples that span ranges of different hypothetical factors. Evolutionary integration is expressed in the subsample of 24 adult Homo, and ontogenetic integration in the subsample of 34 H. sapiens. In this data set, vault, cranial base, and face show striking and localized patterns of covariation over ontogeny, similar but not identical to the patterns seen over evolution. The principal differences between ontogeny and phylogeny pertain to the cranial base. There is also a component of cranial length to height ratio not reducible to either process. Our methodology allows a separation of these independent processes (and their impact on cranial shape) that conventional methods have not found. 相似文献
2.
To examine the evolutionary differences between hominoid locomotor systems, a number of observations concerning the growth of the pelvis among the great apes as compared to modern and fossil hominids are reported. We are interested in the size and shape of the coxal bones at different developmental stages across species that may elucidate the relationship between ontogeny and phylogeny (i.e., heterochrony) in the hominoid pelvis. Our hypotheses are: (1) do rates of absolute growth differ?, (2) do rates of relative growth differ?, and (3) does heterochrony explain these differences? Bivariate and multivariate analyses of pelvic dimensions demonstrate both the diversity of species-specific ontogenetic patterns among hominoids, and an unequivocal separation of hominids and the great apes. Heterochrony alone fails to account for the ontogenetic differences between hominids and the great apes. Compared to recent Homo,Australopithecus can be described as 'hyper-human' from the relative size of the ischium, and short but broad ilium. Australopithecus afarensis differs from Australopithecus africanus by its relatively long pubis. In multivariate analyses of ilium shape, the most complete coxal bone attributed to Homo erectus, KNM-ER 3228, falls within the range of juvenile and adult Australopithecus, whereas Broken Hill falls within the range of modern Homo, suggesting that the modern human ilium shape arose rather recently. Among the great apes, patterns of pelvic ontogeny do not exclusively separate the African apes from Pongo. 相似文献
3.
S P Blaney 《Folia primatologica; international journal of primatology》1986,47(2-3):81-96
There is considerable speculation about the role and significance of the paranasal sinuses in the Hominoidea, and this study aims to present new data about an old problem from cephalograms of dried crania. Measurements of frontal sinus volumes were determined for Gorilla gorilla gorilla; G. gorilla beringei and Pan troglodytes. By adopting an allometric approach it was determined that the frontal sinus volume of Gorilla is relatively smaller than that of Pan, and that the frontal sinus of G. g. gorilla is relatively smaller than that of G. g. beringei. Frontal sinus volume scales in a positive allometric fashion relative to skull length. Since the slope is steeper for Pan, frontal sinus volume is increasing at a faster rate than in Gorilla. Sexual dimorphism in frontal sinus volume is present. Thirty crania of Pongo were investigated for evidence of pneumatization of the frontal bone. In no case was secondary invasion of the frontal bone by the maxillary antrum observed. In Gorilla, the nasal cavity volume scales isometrically with skull length. The scaling relationships discussed do not support any 'functional' role of the frontal sinus associated with nasal function but suggest a 'structural' role associated with craniofacial architecture. 相似文献
4.
Morphological evolution in marmots (Rodentia, Sciuridae): size and shape of the dorsal and lateral surfaces of the cranium 总被引:1,自引:0,他引:1
A. Cardini R. S. Hoffmann R. W. Thorington jr 《Journal of Zoological Systematics and Evolutionary Research》2005,43(3):258-268
Marmots are the largest ground squirrels and have been extensively studied by sociobiologists investigating the evolution of mammal societies. Being a member of the sciurid clade, traditionally considered inclined to convergence, they are also a group on which to test the hypothesis of sciurid propensity to homoplasy of osteological characters. In the present analysis, the dorsal and lateral surfaces of the cranium of all living marmot species are compared with geometric morphometric techniques. Phenetic groups are found which reflect the subgeneric classification of marmots and are consistent with previous morphometric analyses of the mandible and ventral cranium. Two species have distinctive morphologies and phenetic relationships not congruent with phylogeny. Marmota vancouverensis is highly divergent for osteological characters, fur colour and behaviour despite its young age and close genetic similarity to Marmota caligata . Its small population may represent a rare chance to study evolutionary processes during rapid allopatric speciation in mammals, but strong conservation efforts are required to preserve this unique component of the Vancouver Island biodiversity. Also, Marmota monax has distinctive cranial traits. These are possibly related to its long separate evolutionary history and unique ecology and behaviour. Size-related convergence is not evident in Marmota . When outgroup species are included, Spermophilus , Cynomys , Tamias , and Sciurus group together on one branch, Marmota on the other. This is best explained as a retention of the ancestral morphology in the smaller members of the Marmotini ( Spermophilus , Cynomys , and Tamias ) and the evolution of derived morphology in Marmota . 相似文献
5.
Recently, Mendes et al. [1] described the use of a liquid tool (water) in captive orangutans. Here, we tested chimpanzees and gorillas for the first time with the same "floating peanut task." None of the subjects solved the task. In order to better understand the cognitive demands of the task, we further tested other populations of chimpanzees and orangutans with the variation of the peanut initially floating or not. Twenty percent of the chimpanzees but none of the orangutans were successful. Additional controls revealed that successful subjects added water only if it was necessary to obtain the nut. Another experiment was conducted to investigate the reason for the differences in performance between the unsuccessful (Experiment 1) and the successful (Experiment 2) chimpanzee populations. We found suggestive evidence for the view that functional fixedness might have impaired the chimpanzees' strategies in the first experiment. Finally, we tested how human children of different age classes perform in an analogous experimental setting. Within the oldest group (8 years), 58 percent of the children solved the problem, whereas in the youngest group (4 years), only 8 percent were able to find the solution. 相似文献
6.
Neus Martínez-Abadías Carolina Paschetta Soledad de Azevedo Mireia Esparza Rolando González-José 《Evolutionary biology》2009,36(1):37-56
Neurocranial globularity is one of the few derived traits defining anatomically modern humans. Variations in this trait derive
from multiple and complex interactions between portions of the brain and the size and shape of the cranial base, among other
factors. Given their evolutionary and functional importance, neurocranial globularity is expected to present high genetic
and developmental constraints on their phenotypic expression. Here we applied two independent approaches to investigate both
types of constraints. First, we assessed if patterns of morphological integration are conserved or else disrupted on a series
of artificially deformed skulls in comparison to non-deformed (ND) ones. Second, after the estimation of the genetic covariance
matrix for human skull shape, we explored how neurocranial globularity would respond to putative selective events disrupting
the normal morphological patterns. Simulations on these deviations were explicitly set to replicate the artificial deformation
patterns in order to compare developmental and genetic constraints under the same biomechanical conditions. In general terms,
our results indicate that putative developmental constraints help to preserve some aspects of normal morphological integration
even in the deformed skulls. Moreover, we find that the response to selection in neurocranial globularity is pervasive. In
other words, induced changes in the vault generate a global response, indicating that departures from normal patterns of neurocranial
globularity are genetically constrained. In summary, our combined results suggest that neurocranial globularity behaves as
a highly genetic and developmental constrained trait.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Neus Martínez-Abadías and Rolando González-José contributed equally to this work. 相似文献
7.
Hugo A. Benítez Darija Lemic Renata Bažok Raffaella Bravi Marina Buketa Thomas Püschel 《Zoologischer Anzeiger》2014,253(6):461-468
The morphological integration of the hind wings of the western corn rootworm Diabrotica virgifera virgifera LeConte was investigated to get a better insight of the undergone by this invasive species. Geometric morphometric methods were used to test two modularity hypotheses associated with the wing development and function (hypothesis H1: anterior/posterior or H2: distal/proximal wing parts). Both hypotheses were rejected and the results showed the integrated behavior of the hind wings of D. v. virgifera. The hypothesized modules do not represent separate units of variation, so in a similar fashion as exhibited by the model species Drosophila melanogaster, the hind wings of D. v. virgifera act as a single functional unit. The moderate covariation strength found between anterior and posterior and distal and proximal parts of the hind wing of D. v. virgifera confirms its integrated behavior. We conclude that the wing shape shows internal integration, which could enable flexibility and thus enhance flight maneuverability. This study contributes to the understanding of morphological integration and modularity on a non-model organism. Additionally, these findings lay the groundwork for future flight performance and biogeographical studies on how wing shape and size vary across the endemic and expanded/invaded range in the USA and Europe infested with D. v. virgifera. 相似文献
8.
A. S. Gardner 《Biological journal of the Linnean Society. Linnean Society of London》1986,29(3):223-244
Geographic variation was investigated in populations of the day gecko Phelsuma sundbergi from 22 islands in the Seychelles, using multivariate ordination procedures. Multiple group principal components analysis was used to negate ontogenetic variation. Seventy-eight characters from three character systems (body proportions, scalation and colour pattern) were analysed from 349 specimens. Three phenetic aggregations of granitic island populations were detected from the northwestern, northeastern and southern island groups. A comparison of the results from the three character systems analysed separately suggests that the separation of the southern form preceded that of the northern forms. Colour pattern characters reflect this closely, while body proportions and scalation characters follow evolution of body size. The populations of Phelsuma sundbergi on the coralline islands are not well differentiated from the races on the granitic islands, and probably represent recent colonizations or introductions by man. 相似文献
9.
Patterns of interspecific differentiation in saki monkeys (Pithecia) are quantitatively described and possible evolutionary processes producing them are examined. The comparison of species correlation matrices to expected patterns of morphological integration reveal significant and similar patterns of development-based cranial integration among species. Aspects of the facial region are more heavily influenced by general size variation than features of the neural region. The comparison of pooled within- and between-groups V/CV matrices suggests that genetic drift might be a sufficient explanation for saki cranial evolution. Differential natural selection gradients are also reconstructed because selection may also have caused population differentiation through evolutionary time. These gradients illustrate the inherent multivariate nature of selection, being a consequence of the interaction between existing morphological integration (correlation) among traits and the action of natural selection. Yet, our attempt to interpret selection gradients in terms of their functional significance did not result in any clear association between selection and function. Perhaps this is also an indication that morphological evolution in sakis was mostly neutral. 相似文献
10.
A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera) 总被引:1,自引:0,他引:1
Morphometric correlation matrices from 11 Mediterranean and European honey bee races have been compared. The degree of integration, measured by the eigenvalue variance of the correlation matrix or by Cheverud's index of integration, varies considerably between races but covaries neither with overall body size nor with the variance of the respective sample. Hence, the degree of morphological integration does not depend on body size or the level of variability The patterns of morphometric correlation are significantly similar among all races, but some minor differences in the patterns could be detected: The similarity between the correlation matrices is independent of the degree of phylogenetic relatedness between the respective races. In all races characters belonin to the same functional and/or developmental unit (leg, wing, abdominal characters) have Eiter correlations than the average. Most of the variation in the pattern of correlation can be expfained as a side effect of variation in the degree of integration. Races with high levels of integration tend to have hiher correlations between the main groups of characters, and races with low levels of integration tave smaller correlations between the main grous of characters, while the basic pattern remains undisturbed. In summary, the comparative analysis of morphometric correlation matrices reveals a picture of stability with respect to the pattern of integration and of variation in the degree of integration, which is random with respect to body size, degree of variability, and phylogeny. 相似文献
11.
12.
Variation in guenon skulls (I): species divergence, ecological and genetic differences 总被引:1,自引:1,他引:1
Guenons are the most diverse clade of African monkeys. They have varied ecologies, include arboreal and terrestrial species, and can be found in nearly every region of sub-Saharan Africa. Species boundaries are often uncertain, with a variable number of species and subspecies mostly recognised on the basis of their geographic distribution and pelage. If guenon soft tissue patterns show high variability, the same does not seem to hold for skull morphology. Guenon skulls are traditionally considered relatively undifferentiated and homogeneous. However, patterns of variation in skulls have never been examined using a large number of specimens sampled across the breadth of species diversity. Thus, in the present study, skulls of adult guenons and two outgroup species are analysed using three-dimensional geometric morphometrics. Three-dimensional coordinates of 86 anatomical landmarks were measured on 1,315 adult specimens belonging to all living guenon species except Cercopithecus dryas. Species are well-discriminated using shape but the best discrimination occurs when species have either a long evolutionary history (e.g., Allenopithecus nigroviridis) or represent extremes of size variation (Miopithecus sp. and Erythrocebus patas). Interspecific phenetic relationships reflect size differences. Four main clusters are found that mainly correspond to four size groups: the smallest species (Miopithecus sp.), the largest species (E. patas plus the study outgroups), a group of medium-small arboreal guenons, and a group of medium-large arboreal and terrestrial guenons. Correlations between interspecific shape distances and interspecific differences in size are higher than between shape distances and genetic distances. However, if only the component of interspecific shape variation which is not correlated to evolutionary allometry is used in the comparison with genetic distances, correlations are up to 1.4 times larger than those including allometric shape. The smallest correlations are those between shape and ecological distances, which is consistent with the lack of clusters clearly reflecting broad ecological specialisations (e.g., arboreality versus terrestriality). Thus, size, which is generally considered more evolutionarily labile than shape, seems to have played a major role in the evolution of the guenons. The incongruence between interspecific shape differences and phylogeny might be explained by a large proportion of shape changes having occurred along allometric trajectories that tend to be conserved within this clade. 相似文献
13.
Great apes and humans use their hands in fundamentally different ways, but little is known about joint biomechanics and internal bone variation. This study examines the distribution of mineral density in the third metacarpal heads in three hominoid species that differ in their habitual joint postures and loading histories. We test the hypothesis that micro-architectural properties relating to bone mineral density reflect habitual joint use. The third metacarpal heads of Pan troglodytes, Pongo pygmaeus, and Homo sapiens were sectioned in a sagittal plane and imaged using backscattered electron microscopy (BSE-SEM). For each individual, 72 areas of subarticular cortical (subchondral) and trabecular bone were sampled from within 12 consecutive regions of the BSE-SEM images. In each area, gray levels (representing relative mineralization density) were quantified.Results show that chimpanzee, orangutan, and human metacarpal III heads have different gray level distributions. Weighted mean gray levels (WMGLs) in the chimpanzee showed a distinct pattern in which the ‘knuckle-walking’ regions (dorsal) and ‘climbing’ regions (palmar) are less mineralized, interpreted to reflect elevated remodeling rates, than the distal regions. Pongo pygmaeus exhibited the lowest WMGLs in the distal region, suggesting elevated remodeling rates in this region, which is loaded during hook grip hand postures associated with suspension and climbing. Differences among regions within metacarpal heads of the chimpanzee and orangutan specimens are significant (Kruskal–Wallis, p < 0.001). In humans, whose hands are used for manipulation as opposed to locomotion, mineralization density is much more uniform throughout the metacarpal head. WMGLs were significantly (p < 0.05) lower in subchondral compared to trabecular regions in all samples except humans. This micro-architectural approach offers a means of investigating joint loading patterns in primates and shows significant differences in metacarpal joint biomechanics among great apes and humans. 相似文献
14.
Population history, biogeography, and taxonomy of orangutans (Genus: Pongo) based on a population genetic meta-analysis of multiple loci 总被引:1,自引:0,他引:1
Steiper ME 《Journal of human evolution》2006,50(5):509-522
This paper examines orangutan population history and evolution through a meta-analysis of seven loci collected from both Sumatran and Bornean orangutans. Within orangutans, most loci show that the Sumatran population is about twice as diverse as the Bornean population. Orangutans are more diverse than African apes and humans. Sumatran and Bornean populations show significant genetic differentiation from one another and their history does not differ significantly from an 'island model' (population splitting without gene flow). Two different methods support a divergence of Bornean and Sumatran orangutans at 2.7-5 million years ago. This suggests that Pleistocene events, such as the cyclical exposure of the Sunda shelf and the Toba volcanic eruption, did not have a major impact on the divergence of Bornean and Sumatran orangutans. Pairwise mismatch analyses, however, suggest that Bornean orangutans have undergone a recent population expansion (beginning 39,000-64,000 years ago), while Sumatran orangutan populations were stable. Pleistocene events may have contributed to these aspects of orangutan population history. These conclusions are applied to the debate on orangutan taxonomy. 相似文献
15.
José María Gómez Francisco Perfectti Christian Peter Klingenberg 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1649)
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. 相似文献
16.
L. R. Monteiro S. F. dos Reis 《Journal of Zoological Systematics and Evolutionary Research》2005,43(4):332-338
The development and evolution of the rodent mandible have been studied in depth in recent years. The mandible is a complex structure because it consists of six morphogenetic components formed by different condensations of mesenchymal cells. Using recent techniques for the geometric analysis of shape, we have combined developmental information with a powerful quantification of shape variation and an independent estimate of phylogeny (molecular data) to assess the evolutionary patterns of shape change in mandibles of the rodent genus Trinomys . In general, the major trends in shape variation did not agree with the expected phylogenetic pattern. However, for small-scale morphological differences, one species ( T. yonenagae ) was responsible for the lack of association between morphology and molecular divergence. This species is genetically similar to but morphologically different from other Trinomys . The coronoid process was considered to be the most conservative morphogenetic component in the mandible. 相似文献
17.
Allowen Evin Keith Dobney Renate Schafberg Joseph Owen Una Strand Vidarsdottir Greger Larson Thomas Cucchi 《BMC evolutionary biology》2015,15(1)
Background
Identifying the phenotypic responses to domestication remains a long-standing and important question for researchers studying its early history. The great diversity in domestic animals and plants that exists today bears testament to the profound changes that domestication has induced in their ancestral wild forms over the last millennia. Domestication is a complex evolutionary process in which wild organisms are moved to new anthropogenic environments. Although modern genetics are significantly improving our understanding of domestication and breed formation, little is still known about the associated morphological changes linked to the process itself. In order to explore phenotypic variation induced by different levels of human control, we analysed the diversity of dental size, shape and allometry in modern free-living and captive wild, wild x domestic hybrid, domestic and insular Sus scrofa populations.Results
We show that domestication has created completely new dental phenotypes not found in wild boar (although the amount of variation amongst domestic pigs does not exceed that found in the wild). Wild boar tooth shape also appears to be biogeographically structured, likely the result of post-glacial recolonisation history. Furthermore, distinct dental phenotypes were also observed among domestic breeds, probably the result of differing types and intensity of past and present husbandry practices. Captivity also appears to impact tooth shape. Wild x domestic hybrids possess second molars that are strictly intermediate in shape between wild boar and domestic pigs (third molars, however, showing greater shape similarity with wild boar) while their size is more similar to domestic pigs. The dental phenotypes of insular Sus scrofa populations found on Corsica and Sardinia today (originally introduced by Neolithic settlers to the islands) can be explained either by feralization of the original introduced domestic swine or that the founding population maintained a wild boar phenotype through time.Conclusions
Domestication has driven significant phenotypic diversification in Sus scrofa. Captivity (environmental control), hybridization (genome admixture), and introduction to islands all correspond to differing levels of human control and may be considered different stages of the domestication process. The relatively well-known genetic evolutionary history of pigs shows a similar complexity at the phenotypic level.Electronic supplementary material
The online version of this article (doi:10.1186/s12862-014-0269-x) contains supplementary material, which is available to authorized users. 相似文献18.
Ana Ivanović Tanja D. Vukov Georg Džukić Nataša Tomašević Miloš L. Kalezić 《Zoomorphology》2007,126(3):173-183
As with many other amphibians, Triturus species are characterized by a biphasic life cycle with abrupt changes in the cranial skeleton during metamorphosis. The
post-metamorphic shape changes of the cranial skeleton were investigated using geometric morphometric techniques in six species:
Triturus alpestris, T. vulgaris, T. dobrogicus, T. cristatus, T. carnifex, and T. karelinii. The comparative analysis of ontogenetic trajectories revealed that these species have a conserved developmental rate with
divergent ontogenetic trajectories of the ventral skull shape that mainly reflect phylogenetic relatedness. A striking exception
in the ontogenetic pattern was possibly found in T. dobrogicus, characterized by a marked increase in the developmental rate compared to the other newt species. The size-related shape
changes explained a large proportion of shape change during post-metamorphic growth within each species, with marked positive
allometric growth of skull elements related to foraging. 相似文献
19.
Long-term phenotypic evolution can be modeled using the response-to-selection equation of quantitative genetics, which incorporates information about genetic constraints (the G matrix). However, little is known about the evolution of G and about its long-term importance in constraining phenotypic evolution. We first investigated the degree of conservation of the G matrix across three species of crickets and qualitatively compared the pattern of variation of G to the phylogeny of the group. Second, we investigated the effect of G on phenotypic evolution by comparing the direction of greatest quantitative genetic variation within species (g(max)) to the direction of phenotypic divergence between species (Delta(z)). Each species, Gryllus veletis, G. firmus, and G. pennsylvanicus, was reared in the laboratory using a full-sib breeding design to extract quantitative genetic information. Five morphological traits related to size were measured. G matrices were compared using three statistical approaches: the T method, the Flury hierarchy, and the MANOVA method. Results revealed that the differences between matrices were small and mostly caused by differences in the magnitude of the genetic variation, not by differences in principal component structure. This suggested that the G matrix structure of this group of species was preserved, despite significant phenotypic divergence across species. The small observed differences in G matrices across species were qualitatively consistent with genetic distances, whereas ecological information did not provide a good prediction of G matrix variation. The comparison of g(max) and Delta(z) revealed that the angle between these two vectors was small in two of three species comparisons, whereas the larger angle corresponding to the third species comparison was caused in large part by one of the five traits. This suggests that multivariate phenotypic divergence occurred mostly in a direction predicted by the direction of greatest genetic variation, although it was not possible to demonstrate the causal relationship from G to Delta(z). Overall, this study provided some support for the validity of the predictive power of quantitative genetics over evolutionary time scales. 相似文献
20.
The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species 总被引:1,自引:0,他引:1
In northern freshwater lakes, several fish species have populations composed of discrete morphs, usually involving a divergence between benthic and limnetic morphs. Although it has been suggested that swimming demand plays an important role in morphological differentiation, thus influencing habitat selection, it is unclear how it affects reaction norms, patterns in character correlation, and levels of morphological integration. We examined whether swimming demand could induce morphological plasticity in the directions expected under divergent habitat selection, and evaluated its influence on the morphological integration in Arctic charr (Salvelinus alpinus) and brook charr (S. fontinalis), two congeneric species exhibiting conspicuous and subtle resource polymorphism, respectively. We found that changes in morphology were induced by differential swimming demands in both species. The length of the pectoral fin was the character that responded most strongly according to the predicted morphological expectations under divergent habitat selection. High levels of morphological plasticity, relatively low levels of integration, and differences found in the morphological correlation structure among water velocity treatments suggest that constraints on morphological change are unlikely in either species, thus allowing great potential for phenotypic flexibility in both species. The magnitude of character integration, however, was larger for Arctic charr than for brook charr. This latter result is discussed in the light of the differences in the level of polymorphism between the two species in the wild. The results of the present study indicate that swimming demand alone may not be sufficient to generate the polymorphism encountered in nature. Given that both diet and swimming demands can induce morphological changes, it would be important to conduct experiments targeting the interaction between the morphological modules related to trophic and swimming demands. 相似文献