首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reconstructions of foraging behavior and diet are central to our understanding of fossil hominin ecology and evolution. Current hypotheses for the evolution of the genus Homo invoke a change in foraging behavior to include higher quality foods. Recent microwear texture analyses of fossil hominin teeth have suggested that the evolution of Homo erectus may have been marked by a transition to a more variable diet. In this study, we used microwear texture analysis to examine the occlusal surface of 2 molars from Dmanisi, a 1.8 million year old fossil hominin site in the Republic of Georgia. The Dmanisi molars were characterized by a moderate degree of surface complexity (Asfc), low textural fill volume (Tfv), and a relatively low scale of maximum complexity (Smc), similar to specimens of early African H. erectus. While caution must be used in drawing conclusions from this small sample (n = 2), these results are consistent with continuity in diet as H. erectus expanded into Eurasia.  相似文献   

3.
Homo erectus is the first hominin species with a truly cosmopolitan distribution and resembles recent humans in its broad spatial distribution. The microevolutionary events associated with dispersal and local adaptation may have produced similar population structure in both species. Understanding the evolutionary population dynamics of H. erectus has larger implications for the emergence of later Homo lineages in the Middle Pleistocene. Quantitative genetics models provide a means of interrogating aspects of long-standing H. erectus population history narratives. For the current study, cranial fossils were sorted into six major palaeodemes from sites across Africa and Asia spanning 1.8–0.1 Ma. Three-dimensional shape data from the occipital and frontal bones were used to compare intraspecific variation and test evolutionary hypotheses. Results indicate that H. erectus had higher individual and group variation than Homo sapiens, probably reflecting different levels of genetic diversity and population history in these spatially disperse species. This study also revealed distinct evolutionary histories for frontal and occipital bone shape in H. erectus, with a larger role for natural selection in the former. One scenario consistent with these findings is climate-driven facial adaptation in H. erectus, which is reflected in the frontal bone through integration with the orbits.  相似文献   

4.
The announcement of a new species, Homo floresiensis, a primitive hominin that survived until relatively recent times is an enormous challenge to paradigms of human evolution. Until this announcement, the dominant paradigm stipulated that: 1) only more derived hominins had emerged from Africa, and 2) H. sapiens was the only hominin since the demise of Homo erectus and Homo neanderthalensis. Resistance to H. floresiensis has been intense, and debate centers on two sets of competing hypotheses: 1) that it is a primitive hominin, and 2) that it is a modern human, either a pygmoid form or a pathological individual. Despite a range of analytical techniques having been applied to the question, no resolution has been reached. Here, we use cladistic analysis, a tool that has not, until now, been applied to the problem, to establish the phylogenetic position of the species. Our results produce two equally parsimonious phylogenetic trees. The first suggests that H. floresiensis is an early hominin that emerged after Homo rudolfensis (1.86 Ma) but before H. habilis (1.66 Ma, or after 1.9 Ma if the earlier chronology for H. habilis is retained). The second tree indicates H. floresiensis branched after Homo habilis.  相似文献   

5.
The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus) migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism (“cretinism”) and Laron syndrome (primary growth hormone insensitivity). This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1) is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo.  相似文献   

6.
The fossil remains of Homo floresiensis have been debated extensively over the past few years. This paper will give a brief summary of the current debate, which can be summed up in three main competing explanations for the morphology of the type specimen: pathology, descendent of an early australopith-like hominin, or insular descendent of H. erectus. This paper will make a case for island dwarfing being the most plausible scenario, with H. erectus as the mainland ancestor. Additionally, the morphology of the pelvis and lower limbs are compared to other insular vertebrates and interpreted in terms of function and adaptation to the island environment of Flores.  相似文献   

7.
Three levels of social organization are recognized among human hunter-gatherers: the community, the domestic unit, and the band. We describe the key features of these three levels and show how they are intimately connected. We hypothesize that, in the course of human social evolution, bands emerged as a level of social organization within existing communities. As predators, hunter-gatherers live at lower population densities than chimpanzees (Pan troglodytes), even where the two species are sympatric. We propose that band formation evolved in humans from the more transient fissioning behavior seen within chimpanzee communities as a solution to the conflicting pressures of sustaining higher levels of cooperation required in hunting and the division of labor in a more dispersed community. If disputes break out, or if resources in the band territory are temporarily depleted, the existence of a wider community continues to be adaptive. To reconstruct the evolution of band society, we draw upon four lines of evidence: group (or network) size predicted from neocortex ratios, the distance materials were moved from their source during various periods in hominin evolution, ethnographic data on hunter-gatherer daily foraging ranges and population densities collated by the authors, and fossil hominin morphology. From these data, we conclude that key features of modern human hunter-gatherer social organization probably appear in the course of the evolution of Homo heidelbergensis.  相似文献   

8.
We investigate cochlear variation, an indirect evidence of auditory capacities among early hominins and extant catarrhine species, in order to assess (i) the phylogenetic signal of relative external cochlear length (RECL) and oval window area (OWA), (ii) the evolutionary model with the highest probability of explaining our observed data, (iii) some hominin ancestral nodes for RECL and OWA. RECL has a high phylogenetic signal under a Brownian motion model, and is closely correlated with body mass. Our model-based method has the advantage over parsimony-based methods of incorporating branch lengths in a phylo-morphospace, and this shows RECL shifted towards significantly higher values at the Homo erectus-Homo sapiens node. We also observe that the StW 53 and KB 6067 fossil specimens from Sterkfontein and Kromdraai likely represent one or two distinct, smaller-bodied and less derived hominin form(s) compared to Paranthropus specimens represented at Swartkrans.  相似文献   

9.
Most researchers believe that anatomically modern humans (AMH) first appeared in Africa 160-190 ka ago, and would not have reached eastern Asia until ∼50 ka ago. However, the credibility of these scenarios might have been compromised by a largely inaccurate and compressed chronological framework previously established for hominin fossils found in China. Recently there has been a growing body of evidence indicating the possible presence of AMH in eastern Asia ca. 100 ka ago or even earlier. Here we report high-precision mass spectrometric U-series dating of intercalated flowstone samples from Huanglong Cave, a recently discovered Late Pleistocene hominin site in northern Hubei Province, central China. Systematic excavations there have led to the in situ discovery of seven hominin teeth and dozens of stone and bone artifacts. The U-series dates on localized thin flowstone formations bracket the hominin specimens between 81 and 101 ka, currently the most narrow time span for all AMH beyond 45 ka in China, if the assignment of the hominin teeth to modern Homo sapiens holds. Alternatively this study provides further evidence for the early presence of an AMH morphology in China, through either independent evolution of local archaic populations or their assimilation with incoming AMH. Along with recent dating results for hominin samples from Homo erectus to AMH, a new extended and continuous timeline for Chinese hominin fossils is taking shape, which warrants a reconstruction of human evolution, especially the origins of modern humans in eastern Asia.  相似文献   

10.
Sangiran (Solo Basin, Central Java, Indonesia) is the singular Homo erectus fossil locale for Early Pleistocene Southeast Asia. Sangiran is the source for more than 80 specimens in deposits with 40Ar/39Ar ages of 1.51-0.9 Ma. In April 2001, we recovered a H. erectus left maxilla fragment (preserving P3- M2) from the Sangiran site of Bapang. The find spot lies at the base of the Bapang Formation type section in cemented gravelly sands traditionally called the Grenzbank Zone. Two meters above the find spot, pumice hornblende has produced an 40Ar/39Ar age of 1.51 ± 0.08 Ma. With the addition of Bpg 2001.04, Sangiran now has five H. erectus maxillae. We compare the new maxilla with homologs representing Sangiran H. erectus, Zhoukoudian H. erectus, Western H. erectus (pooled African and Georgian specimens), and Homo habilis. Greatest contrast is with the Zhoukoudian maxillae, which appear to exhibit a derived pattern of premolar-molar relationships compared to Western and Sangiran H. erectus. The dental patterns suggest distinct demic origins for the earlier H. erectus populations represented at Sangiran and the later population represented at Zhoukoudian. These two east Asian populations, separated by 5000 km and nearly 800 k.yr., may have had separate origins from different African/west Eurasian populations.  相似文献   

11.
12.
A new Homo erectus endocast, Zhoukoudian (ZKD) V, is assessed by comparing it with ZKD II, ZKD III, ZKD X, ZKD XI, ZKD XII, Hexian, Trinil II, Sambungmacan (Sm) 3, Sangiran 2, Sangiran 17, KNM-ER 3733, KNM-WT 15 000, Kabwe, Liujiang and 31 modern Chinese. The endocast of ZKD V has an estimated endocranial volume of 1140 ml. As the geological age of ZKD V is younger than the other ZKD H. erectus, evolutionary changes in brain morphology are evaluated. The brain size of the ZKD specimens increases slightly over time. Compared with the other ZKD endocasts, ZKD V shows important differences, including broader frontal and occipital lobes, some indication of fuller parietal lobes, and relatively large brain size that reflect significant trends documented in later hominin brain evolution. Bivariate and principal component analyses indicate that geographical variation does not characterize the ZKD, African and other Asian specimens. The ZKD endocasts share some common morphological and morphometric features with other H. erectus endocasts that distinguish them from Homo sapiens.  相似文献   

13.
The 3d Ct reconstruction and virtual brain endocast of Cranium 5 from the site of “La Sima de los Huesos” (Atapuerca), allows us to get new information to increase the study and knowledge of Homo heidelbergensis population, and to compare this specimen with others in the fossil record, in order to understand the evolutionary process of the brain, focusing on the middle Pleistocene period. Furthermore, we can observe the changes this species (Homo heidelbergensis) has undergone, at least in Sima de los Huesos population making comparative studies with African and Asian middle Pleistocene specimens. We have used the new data to compare European Homo heidelbergensis represented by SH5 with Kabwe, a controversial specimen considered by some authors like the African Homo heidelbergensis representative, in order to establish the similarities and differences between both specimens.  相似文献   

14.
《L'Anthropologie》2021,125(5):102966
All Lower Paleolithic sites discovered by Mr. Shinïchi FUJIMURA from 1981 to 2000 were falsified by himself. We wonder if Lower Paleolithic sites really exist (corresponding to a period of 30,000 years ago in Japan) in the archipelago of Japan. We examined cultures of sites likely dating to the Early Upper Paleolithic and Lower Paleolithic discovered in the archipelago of Japan. While Japan was continuous with the continent in the Mindel glaciation (400,000 years ago) or in the Riss glaciation (200,000 years ago), Homo erectus or Homo heidelbergensis with the lithic industry of the Acheulean arrived in the archipelago of Japan. Thereafter, they survived on the islands of Japan cut the continent to the Upper Paleolithic while keeping the industry.  相似文献   

15.
16.
《Comptes Rendus Palevol》2002,1(4):243-253
Four human remains: one mandible, two skulls and one metatarsus were discovered between 1991 and 1999 at the open-air site of Dmanisi, Georgia, in a precise stratigraphic, palaeontological and archaeological context, in volcanic ashes dated to 1.81 ± 0.05 Ma. The first studies of these fossils enable the authors to compare them with the morphology of archaic African Homo erectus, ascribed to Homo ergaster, and to ascertain hominid presence at the gates of Europe 300 000 years earlier than the classical scenario forecasted. In September 2000, the discovery of a second more complete and robust mandible D 2600 presents a threefold interest: palaeontological, functional and pathological. A comparison with Homo habilis and Homo erectus leads to the recognition of a new Homo species: H. georgicus sp. nov. The morphofunctional characteristics and the antiquity of H. georgicus characterise the root of a long Eurasian line.  相似文献   

17.
The study of dental morphology by means of geometric morphometric methods allows for a detailed and quantitative comparison of hominin species that is useful for taxonomic assignment and phylogenetic reconstruction. Upper second and third molars have been studied in a comprehensive sample of Plio- and Pleistocene hominins from African, Asian and European sites in order to complete our analysis of the upper postcanine dentition. Intraspecific variation in these two molars is high, but some interspecific trends can be identified. Both molars exhibit a strong reduction of the distal cusps in recent hominin species, namely European Homo heidelbergensis, Homo neanderthalensis and Homo sapiens, but this reduction shows specific patterns and proportions in the three groups. Second molars tend to show four well developed cusps in earlier hominin species and their morphology is only marginally affected by allometric effects. Third molars can be incipiently reduced in earlier species and they evince a significant allometric component, identified both inter- and intraspecifically. European Middle Pleistocene fossils from Sima de los Huesos (SH) show a very strong reduction of these two molars, even more marked than the reduction observed in Neanderthals and in modern human populations. The highly derived shape of SH molars points to an early acquisition of typical Neanderthal dental traits by pre-Neanderthal populations and to a deviation of this population from mean morphologies of other European Middle Pleistocene groups.  相似文献   

18.
Brain development in Homo erectus is a subject of great interest, and the infant calvaria from Mojokerto, Indonesia, has featured prominently in these debates. Some researchers have suggested that the pattern of brain development in H. erectus resembled that of non-human apes, while others argue for a more human-like growth pattern. In this study, we retested hypotheses regarding brain ontogeny in H. erectus using new methods (resampling), and data from additional H. erectus crania. Our results reveal that humans achieve 62% (±10%) and chimpanzees 80% (±9%) of their adult endocranial volume by 0.5–1.5 years of age. Using brain mass data, humans achieve on average 65% and chimpanzees 81% of adult size by 0.5–1.5 years. When compared with adult H. erectus crania (n = 9) from Indonesian sites greater than 1.2 million years old, Mojokerto had reached ∼70% of its adult cranial capacity. Mojokerto thus falls almost directly between the average growth in humans and chimpanzees, and well within the range of both. We therefore suggest that brain development in H. erectus cannot be dichotomized as either ape-like or human-like; it was H. erectus-like. These data indicate that H. erectus may have had a unique developmental pattern that should be considered as an important step along the continuum of brain ontogeny between apes and humans.  相似文献   

19.
Homo floresiensis is an extinct, diminutive hominin species discovered in the Late Pleistocene deposits of Liang Bua cave, Flores, eastern Indonesia. The nature and evolutionary origins of H. floresiensis’ unique physical characters have been intensively debated. Based on extensive comparisons using linear metric analyses, crown contour analyses, and other trait-by-trait morphological comparisons, we report here that the dental remains from multiple individuals indicate that H. floresiensis had primitive canine-premolar and advanced molar morphologies, a combination of dental traits unknown in any other hominin species. The primitive aspects are comparable to H. erectus from the Early Pleistocene, whereas some of the molar morphologies are more progressive even compared to those of modern humans. This evidence contradicts the earlier claim of an entirely modern human-like dental morphology of H. floresiensis, while at the same time does not support the hypothesis that H. floresiensis originated from a much older H. habilis or Australopithecus-like small-brained hominin species currently unknown in the Asian fossil record. These results are however consistent with the alternative hypothesis that H. floresiensis derived from an earlier Asian Homo erectus population and experienced substantial body and brain size dwarfism in an isolated insular setting. The dentition of H. floresiensis is not a simple, scaled-down version of earlier hominins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号