首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

2.
The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. 32P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while [2-3H]myo-inositol and L-[3H(G)]serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. [2-3H]glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H]choline and [1-3H]ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.  相似文献   

3.
The origin of axoplasmic RNA in the squid giant fiber was investigated after exposure of the giant axon or of the giant fiber lobe to [3H]uridine. The occurrence of a local process of synthesis was indicated by the accumulation of labeled axoplasmic RNA in isolated axons incubated with the radioactive precursor. Similar results were obtained in vivo after injection of [3H]uridine near the stellate nerve at a sizable distance from the ganglion. Exposure of the giant fiber lobe to [3H]uridine under in vivo and in vitro conditions was followed by the appearance of labeled RNA in the axoplasm and in the axonal sheath. While the latter process is attributed to incorporation of precursor by sheath cells, a sizable fraction of the radioactive RNA accumulating in the axoplasmic is likely to originate from neuronal perikarya by a process of axonal transport.  相似文献   

4.
Summary It is shown that the axoplasmic composition of acidic and neutral amino acids can be controlled effectively by the method of internal dialysis. Direct assay for specific binding and measurement of diffusion coefficients in axoplasm show that there is no significant binding or compartmentalization of amino acids. The dependence of amino acid efflux on substrate concentration can be measured under well-defined, true steady-state conditions. The taurine efflux-concentration relation in theMyxicola giant axon conforms to a second-order Hill equation. This fact is consistent with either a cooperative process or a mechanism in which membrane translocation is not the rate-controlling step. The effluxes of taurine and glycine from squid axon are an order of magnitude smaller than inMyxicola. The efflux-concentration relations are essentially linear up to 200mm substrate concentration. This result may be produced by specific transporters which have very high asymmetry, or by simple diffusive leak in the absence of specific transporters.  相似文献   

5.
Previous work has revealed that 4S RNA is the primary species of RNA in the axoplasm from the giant axons of the squid and Myxicola. This study shows that axoplasmic 4S RNA from the squid giant axon has the functional properties of tRNA. Axoplasmic RNA was charged with amino acids by aminoacyl-tRNA synthetases prepared from squid brain. The aminoacylation was prevented by incubating the RNA with RNase prior to running the reaction. The amino acid-RNA complex was labile at pH 9, which is characteristic of the acyl linkage between an amino acid and its tRNA. Aminoacyl-tRNA synthetase activity was also present in the axoplasm, primarily in the soluble fraction.  相似文献   

6.
PROTEIN DEGRADATION IN SQUID GIANT AXONS   总被引:6,自引:4,他引:2  
Axoplasm extruded from giant axons of the Chilean squid, Dosidicus gigas, contained a low level of neutral proteinase-like activity, equivalent to 4 × 10?6 mg of chymotrypsin per mg of axoplasmic protein. The enzyme was active at physiological pH and ionic strength. Activity was completely inhibited by 1 mM-para-hydroxymercuribenzoate and was enhanced by divalent metal cations, especially Ca2+. Axoplasm also exhibited proteinase activity at pH 4.8. Both neutral and acid proteinase like activities were also present in the axonal sheath containing Schwann cells, but their specific activities relative to those in the axoplasm were different. A physiological role, related to the axoplasmic flow of protein, is discussed for the axoplasmic neutral proteinase-like activity.  相似文献   

7.
INCORPORATION OF LABELLED PHOSPHATE INTO PHOSPHOLIPIDS IN SQUID GIANT AXONS   总被引:2,自引:2,他引:0  
Inorganic phosphate labelled with 32P was applied to giant axons excised from squid (Loligo pealeii) by addition of 32Pi to the bathing solution, by injection into the axon, or by addition to axoplasm which had been separated from the sheath. The preparations were kept at 10 to 25° for various times up to 4 hr. When 32Pi was supplied by way of the bathing solution, axoplasm and sheath were usually separated at the end of incubation before extraction of the lipids. Lipids were extracted with chloroform-methanol and resolved by paper chromatography. The lipids which became labelled appeared to be the same in sheath and axoplasm. They were identified by cochromatography with known lipids and by chromatography of products formed from them by mild alkaline hydrolysis. They included phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, and probably somelysophosphatidylethanolamine. Some labelled components remained unidentified. Phosphatidylcholine was apparently present, but did not become significantly labelled either in sheath or in axoplasm, or in a squid's stellate ganglion. There was no evidence that separation from the sheath impaired the capacity of the axoplasm for lipid synthesis.  相似文献   

8.
The mechanisms and pathways of synthesis of phosphatidylcholine in the giant fibre system of the squid (Loligo vulgaris) have been examined by incubating the stellate ganglion-nerve preparation or its separated compartments in an artificial bathing solution with labelled choline. Other experiments were done by dissecting the whole stellate ganglion into axoplasm, axon sheath, giant fibre lobe, small fibres and ganglion residue, after incubation. The initial rate of choline incorporation into choline phosphoglycerides was severalfold higher in the lobe than in the axon. Higher lipid radioactivity was recovered in the axon sheath as compared to the axoplasm, and in the small fibres as compared to the ganglion residue which contains its cell bodies. The production of phosphorylcholine and CDP-choline in the intact ganglion-nerve preparation during incubation with choline points to the occurrence of the net synthesis pathway for phosphatidylcholine in this material. Base-exchange activity was also observed in the axon and giant fibre lobe preparations in vitro, but no indication can yet be given whether it also takes place in intact preparations. Electrical stimulation and‘depolarizing’conditions enhance choline phosphorylation in the squid axon and lobe, but decrease phosphatidylcholine labelling.  相似文献   

9.
10.
Summary Ultrastructural observations of the giant axon of Myxicola infundibulum reveal that the axoplasm contains neurofilaments, a few neurotubules and mitochondria. Finger-like projections issuing from the glial cells of the sheath encircle the giant axon at various angles. The space between the axolemma and sheath is 125 Å. Branches of the giant axon are also surrounded by a glial sheath as they course through the neuropil. Some branches of the giant axon seem to fuse with certain neurons, creating a syncytial arrangement between the giant axon and these neurons.Many small nerve fibers course longitudinally in the neuropil of the nerve cord. Most of these axons are separated from each other by a space of 200 Å without intervening glial processes. Synapses in the neuropil have both clear 600 Å vesicles and larger dense core vesicles suggesting chemical transmission. Some, but not all, of the synaptic areas show thickened membranes and dense material in the synaptic cleft.This study was supported in part by PHS NS-07740 to R.L.P., J.A.B. is a NDEA Predoctoral Fellow in the Department of Physiology.  相似文献   

11.
1. The swelling and the osmotic pressure of gelatin at pH 4.7 have been measured in the presence of a number of salts. 2. The effect of the salts on the swelling is closely paralleled by the effect on the osmotic pressure, and the bulk modulus of the gelatin particles calculated from these figures is constant up to an increase in volume of about 800 per cent. As soon as any of the salts increase the swelling beyond this point, the bulk. modulus decreases. This is interpreted as showing that the elastic limit has been exceeded. 3. Gelatin swollen in acid returns to its original volume after removal of the acid, while gelatin swollen in salt solution does not do so. This is the expected result if, as stated above, the elastic limit had been exceeded in the salt solution. 4. The modulus of elasticity of gelatin swollen in salt solutions varies in the same way as the bulk modulus calculated from the osmotic pressure and the swelling. 5. The increase in osmotic pressure caused by the salt is reversible on removal of the salt. 6. The observed osmotic pressure is much greater than the osmotic pressure calculated from the Donnan equilibrium except in the case of AlCl3, where the calculated and observed pressures agree quite closely. 7. The increase in swelling in salt solutions is due to an increase in osmotic pressure. This increase is probably due to a change in the osmotic pressure of the gelatin itself rather than to a difference in ion concentration.  相似文献   

12.
The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 ± 0.8.10-8 cm/sec cm H2O in perfused axons and 3.2 ± 0.6.10-8 cm/sec cm H2O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 ± 0.6 x 10-10 cm/sec cm H2O and 4.8 ± 0.9 x 10-10 cm/sec cm H2O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed.  相似文献   

13.
The synthesis of brain-specific proteins has been examined in perikaryal and axonal regions of the giant fibre system of the squid. After in vitro incubation of stellate ganglia, stellate nerves and isolated giant axons with radioactive amino acids, the labelled soluble proteins have been extracted from the giant fibre lobe, the axoplasm and the axonal sheath of the giant axon and have been separated by gel electrophoresis on a continuous system. In addition, they have been challenged with antisera prepared against the cephalopod brain-specific proteins L1 and L2 and the resulting precipitate has been resolved by sodium dodecyl sulphate-gel electrophoresis. Synthesis of these two proteins appears to be restricted to the giant fibre lobe, while an additional discrete protein band (L5) also becomes clearly labelled in the isolated giant axon. Radioactive components migrating in the region of the L1 and L2 proteins are synthesized in the isolated giant axon. They can be distinguished from tbese proteins on the basis of electrophoretic and immunochemical criteria.  相似文献   

14.
Seasonal and diurnal variation and rehydration effects of pressure-volume parameters in Pseudotsuga menziesii (Mirb.) Franco from a plantation in central Pennsylvania, USA, were evaluated during May-September, 1989. Predawn elastic modulus was lowest in overwintering and newly expanded shoots in May and June, respectively, whereas predawn osmotic potentials at full and zero turgor were lowest in May and in early September, following an August drought. Seasonal variation in predawn relative water content at zero turgor was highly correlated with increases and decreases in elastic modulus and osmotic potential. Diurnal osmotic adjustment resulted in nearly constant turgor pressure, despite decreases in bulk shoot water potential. Elastic modulus decreased diurnally on 1 August and increased on 3 September. Decreases in osmotic potential and/or elastic modulus on 24 June and 1 August lowered the relative water content at zero turgor. Plateaus in pressure-volume data caused by excess apoplastic water, were present in 67% of naturally rehydrated shoots and in all of the shoots artificially rehydrated for 3, 6, 12 and 24 h, and they increased in volume with rehydration time. Plateaus represented 80–95% of the excess apoplastic water lost during pressure-volume analysis. Correcting for plateaus via linear regression had no significant effect on osmotic potential at full turgor; however, uncorrected elastic modulus and relative water content at zero turgor were often significantly lower than the plateau-corrected values, particularly in artificially rehydrated shoots. Plateau-corrected osmotic potential at full turgor and osmotic potential at zero turgor were significantly higher in most artificially rehydrated shoots than in those naturally rehydrated as the result of loss of symplastic solutes. Corrected elastic modulus decreased following 12 and 24 h of rehydration and corrected relative water content at zero turgor increased in as little as 3 h of rehydration. These results indicate that seasonal and diurnal patterns of tissue-water parameters in Pseudotsuga menziesii vary with plant phenology and drought conditions, and that the length of rehydration period is an important consideration for pressure-volume studies.  相似文献   

15.
S V Levin  V V Malev 《Tsitologiia》1987,29(5):569-575
The shear modulus (nu) of single giant axon of the crab Carcinus maenas was determined by measuring the axon elastic stretching up to 1-10%. The value obtained for nu (5-7 X 10(3) dn X cm) is more than that for sheaths of reptilian and mammalian red blood cells by 10(4)-10(6) times. Proteolysis of the axon sheath by pronase solution (2 mg/ml, 15-20 min) increases the amplitude of axon movement at the action potential by 8-10 times. It is suggested that the collagen fibers, Schwann's and connective cells are passive structures of the axon sheath, and that potential-depend axon movement at the action potential is due to deformation of the axolemma and submembrane layer.  相似文献   

16.
Phospholipase A2 and acyltransferase were assayed and characterized in pure axoplasm and neural tissues of squid. Intracellular phospholipase A2 activity was highest in giant fiber lobe and axoplasm, followed by homogenates from retinal fibers, optic lobe and fin nerve. In most preparations, exogenous calcium (5 mM) caused a slight stimulation of activity. EGTA (2 mM) was somewhat inhibitory, indicating that low levels of endogenous calcium may be required for optimum activity. Phospholipase A2 was inhibited by 0.1 mM p-bromophenacylbromide, and was completely inactivated following heating.The level of acylCoA: lysophosphatidylcholine acyltransferase activity was higher in axoplasm and giant fiber lobe than in other neural tissues of the squid. Km (apparent) and Vmax (apparent) for oleoyl-CoA and lysophosphatidylcholine were quite similar for axoplasm and giant fiber lobe enzyme preparations. Acyltransferase activity was inactivated by heat treatment, and greatly inhibited by 0.2 mM p-chloromercuribenzoate, and to a lesser extent by 20 mM N-ethylmaleimide.Phospholipase A2 activity was present in fractions enriched in axolemmal membranes (separated from squid retinal fibers and garfish olfactory nerve) from both tissues, and it was also highly concentrated in vesicles derived from squid axoplasm. In all three preparations, phospholipase A2 activity was stimulated by Ca++ (5 mM) and inhibited by EGTA (2 mM). In addition, axoplasmic cytosol (114,000 g supernatant) retained a substantial portion of a Ca++-independent phospholipase A2, active in the presence of 2 mM EGTA. Acyltransferase activity was present at high content in both axolemma membrane rich fractions, and among subaxoplasmic fractions and axoplasmic vesicles.  相似文献   

17.
Slow axoplasmic transport: a fiction?   总被引:1,自引:0,他引:1  
Ribosomes have not been observed in axoplasm. This had led to the notions that the perikaryon is the only source of neuronal proteins and that the axoplasm is supplied by a (slow) transport mechanism. However, we question these two notions because they are unable to give an account of real neurones in accordance with the body of biological knowledge. We point out, for example, that the synthetic rate of perikarya or the life span of axoplasmic proteins should be beyond known ranges for animal cells and that a uniform axon is unlikely to result if it is fed from one end. We propose an alternative view for the maintenance of the axon which accepts the controversial idea of axoplasmic synthesis of proteins; as a result, the slow transport becomes unnecessary. Our view gives a qualitative account of the observations dealing with the maintenance of the axoplasm. To account for the phenomenology in a more quantitative fashion, a computer simulation was carried out where the equations of the program provided only for axoplasmic synthesis of proteins; the set of curves retrieved were in good agreement with experimental findings believed so far to support the notion of slow transport. In conclusion, we think that the notion of "slow axoplasmic transport" has been a misinterpretation of good observations because the frame of reference was incomplete in not providing for axoplasmic synthesis of proteins.  相似文献   

18.
Although the transfer of glial proteins into the squid giant axon is well documented, the mechanism of the transfer remains unknown. We examined the possibility that the transfer involved membrane-bound vesicles, by taking advantage of the fact that the fluorescent compound, 3,6-acridinediamine, N,N,N,',N'-tetramethylmonohydride [acridine orange (AO)], rapidly and selectively stains vesicular structures in glial cells surrounding the giant axon. We labeled cleaned axons (1–3 cm long) by incubation for 1 min in filtered seawater (FSW) containing AO. Because the AO was concentrated in glial vesicular organelles, these fluoresced bright orange when the axon was examined by epifluorescence microscopy. To look for vesicle transfer, axoplasm was extruded from such AO-treated axons at various times after labeling. During the initial 15 min, an increasing number of fluorescent vesicles were observed. No further increases were observed between 15 and 60 min post AO. The transfer of the fluorescent vesicles into the axoplasm seemed to be energy dependent, as it was inhibited in axons treated with 2 mM KCN. These results suggest that a special mode of exchange exists between the adaxonal glia and the axon, perhaps involving phagocytosis by the axon of small portions of the glial cells.  相似文献   

19.
R D Vale  B J Schnapp  T S Reese  M P Sheetz 《Cell》1985,40(3):559-569
A reconstituted system for examining directed organelle movements along purified microtubules has been developed. Axoplasm from the squid giant axon was separated into soluble supernatant and organelle-enriched fractions. Movement of axoplasmic organelles along MAP-free microtubules occurred consistently only after addition of axoplasmic supernatant and ATP. The velocity of such organelle movement (1.6 micron/sec) was the same as in dissociated axoplasm. The axoplasmic supernatant also supported movement of microtubules along a glass surface and movement of carboxylated latex beads along microtubules at 0.5 micron/sec. The direction of microtubule movement on glass was opposite to that of organelle and bead movement on microtubules. The factors supporting movements of microtubules, beads, and organelles were sensitive to heat, trypsin, AMP-PNP and 100 microM vanadate. All of these movements may be driven by a single, soluble ATPase that binds reversibly to organelles, beads, or glass and generates a translocating force on a microtubule.  相似文献   

20.
The modulus of elasticity of artificial and biological membranes can be determined in membrane vesicles by monitoring the limitation of vesicular swelling during a slow decrease in medium tonicity. The higher the elastic modulus of the membrane, the more effectively the vesicles will resist swelling. This method assumes that the solutes in the system are impermeant, so that the final volume of the vesicles is determined solely by a balance of osmotic and hydrostatic forces. In this paper, we present the results of computer simulation of vesicular swelling in which the solute permeability of the membrane was varied. We find that even a small permeability will lead to a loss of solute from the vesicle that will retard the increase in vesicular volume during dilution of the medium, and thereby cause the apparent modulus of elasticity to be much greater than the true value. For example, if one takes the mannitol permeability in brush border membrane vesicles from small intestine to be 0.004 micron/s (a reasonable estimate), one finds that a vesicular swelling study using mannitol as the principal solute will show the apparent elastic modulus of the vesicles to be greater than 10 times larger than the true value. With higher permeabilities, the effect is even more dramatic. We conclude that determination of impermeance of solutes is a critical prerequisite for making valid determinations of membrane elastic modulus using the vesicular swelling method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号