首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In BALB/c mice, sensitization to respiratory syncytial virus (RSV) attachment (G) glycoprotein leads to the development of lung eosinophilia upon challenge infection with RSV, a pathology indicative of a strong in vivo induction of a Th-2-type response. In this study, we found that a strong, RSV G-specific, Th-1-type cytokine response occurred simultaneously with a Th-2-type response in G-primed mice after RSV challenge. Both Th-1 and Th-2 effector CD4(+) T cells recognized a single immunodominant site on this protein, implying that the differentiation of memory CD4(+) T cells along the Th-1 or Th-2 effector pathway was independent of the epitope specificity of the T cells. A similar observation was made in G-primed H-2(b) haplotype mice after RSV challenge, further suggesting that this process is not dependent on the peptide epitope presented. On the other hand, genes mapping to loci outside of the major histocompatibility complex region are crucial regulators of the development of a Th-2-type response and lung eosinophilia. The implication of these findings for the immune mechanisms underlying the pathogenesis of RSV is discussed.  相似文献   

2.
Jessen B  Faller S  Krempl CD  Ehl S 《Journal of virology》2011,85(19):10135-10143
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.  相似文献   

3.
Respiratory virus infections in the elderly result in increased rates of hospitalization and death. Respiratory syncytial virus (RSV) is a leading cause of severe virus-induced respiratory disease in individuals over the age of 65. CD8 T cells play a critical role in mediating RSV clearance. While it is clear that T cell immunity declines with age, it is not clear to what extent the CD8 T cell response to RSV is altered. Using aged BALB/c mice, we demonstrated that RSV-specific CD8 T cell responses were significantly reduced in the lungs of aged mice at the peak of the T cell response and that this decrease correlated with delayed viral clearance. Despite a decrease in the overall numbers of RSV-specific CD8 T cells during acute infection, their capacity to produce effector cytokines was not impaired. Following viral clearance, the RSV-specific memory CD8 T cells were similar in total number and phenotype in young and aged mice. Furthermore, following infection with a heterologous pathogen expressing an RSV epitope, RSV-specific memory CD8 T cells exhibited similar activation and ability to provide early control of the infection in young and aged mice. These data demonstrate a decrease in the capacity of aged mice to induce a high-magnitude acute CD8 T cell response, leading to prolonged viral replication, which may contribute to the increased disease severity of RSV infection observed for aged individuals.  相似文献   

4.
Following infection with respiratory syncytial virus (RSV), reinfection in healthy individuals is common and presumably due to ineffective memory T cell responses. In peripheral blood of healthy adults, a higher CD4(+)/CD8(+) memory T cell ratio was observed compared with the ratio of virus-specific effector CD4(+)/CD8(+) T cells that we had found in earlier work during primary RSV infections. In mice, we show that an enhanced ratio of RSV-specific neutralizing to nonneutralizing Abs profoundly enhanced the CD4(+) T cell response during RSV infection. Moreover, FcγRs and complement factor C1q contributed to this Ab-mediated enhancement. Therefore, the increase in CD4(+) memory T cell response likely occurs through enhanced endosomal Ag processing dependent on FcγRs. The resulting shift in memory T cell response was likely amplified by suppressed T cell proliferation caused by RSV infection of APCs, a route important for Ag presentation via MHC class I molecules leading to CD8(+) T cell activation. Decreasing memory CD8(+) T cell numbers could explain the inadequate immunity during repeated RSV infections. Understanding this interplay of Ab-mediated CD4(+) memory T cell response enhancement and infection mediated CD8(+) memory T cell suppression is likely critical for development of effective RSV vaccines.  相似文献   

5.
In previous studies, it was observed that children immunized with a formalin-inactivated respiratory syncytial virus vaccine (FI-RSV) developed severe pulmonary disease with greater frequency during subsequent natural RSV infection than did controls. During earlier efforts to develop an animal model of this phenomenon, enhanced pulmonary histopathology was observed after intranasal RSV challenge of FI-RSV-immunized cotton rats. Progress in understanding the immunologic basis for these observations has been hampered by the lack of reagents useful in manipulating the immune response of the cotton rat. This problem prompted us to reinvestigate the characteristics of immunity to RSV in the mouse. In the present studies, extensive pulmonary histopathology was observed in FI-RSV-immunized or RSV-infected BALB/c mice upon RSV challenge, and studies to determine the relative contributions of CD4+ or CD8+ T cells to this process were undertaken. Mice previously immunized with FI-RSV or infected with RSV were depleted of CD4+, CD8+, or both T-cell subsets immediately prior to RSV challenge, and the magnitude of inflammatory cell infiltration around bronchioles and pulmonary blood vessels and into alveolar spaces was quantified. The magnitude of infiltration at each anatomic site in previously FI-RSV-immunized or RSV-infected, nondepleted animals was similar, indicating that this is not a relevant model for enhanced disease. However, the effect of T-cell subset depletion on pulmonary histopathology following RSV challenge was very different between the two groups. Depletion of CD4+ T cells completely abrogated pulmonary histopathology in FI-RSV-immunized mice, whereas it had a much smaller effect on mice previously infected with RSV. FI-RSV-immunized or RSV-infected animals depleted of CD8+ T cells had only a modest reduction of pulmonary histopathology. In addition, RSV infection induced high levels of major histocompatibility complex class I-restricted cytotoxic T-cell activity, whereas FI-RSV immunization induced a low level. These data indicate that immunization with FI-RSV induces a cellular immune response different from that induced by RSV infection, which likely played a role in enhanced disease observed in infants and children.  相似文献   

6.
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.  相似文献   

7.
Virus-specific cytotoxic T lymphocytes are key effectors for the clearance of virus-infected cells and are required for the normal clearance of respiratory syncytial virus (RSV) in mice. Although perforin/granzyme-mediated lysis of infected cells is thought to be the major molecular mechanism used by CD8(+) cytotoxic T lymphocytes for elimination of virus, its role in RSV has not been reported. Here, we show that viral clearance in perforin knockout (PKO) mice is slightly delayed but that both PKO and wild-type mice clear virus by day 10, suggesting an alternative mechanism of RSV clearance. Effector T cells from the lungs of both groups of mice were shown to lyse Fas (CD95)-overexpressing target cells in greater numbers than target cells expressing low levels of Fas, suggesting that Fas ligand (CD95L)-mediated target cell lysis was occurring in vivo. This cell lysis was associated with a delay in RSV-induced disease in PKO mice compared to the time of disease onset for wild-type controls, which correlated with increased and prolonged production of gamma interferon and tumor necrosis factor alpha levels in PKO mice. We conclude that while perforin is not necessary for the clearance of primary RSV infection, the use of alternative CTL target cell killing mechanisms is less efficient and can lead to enhanced disease.  相似文献   

8.
CTL play a major role in the clearance of respiratory syncytial virus (RSV) during experimental pulmonary infection. The fusion (F) glycoprotein of RSV is a protective Ag that elicits CTL and Ab response against RSV infection in BALB/c mice. We used the strategy of screening a panel of overlapping synthetic peptides corresponding to the RSV F protein and identified an immunodominant H-2K(d)-restricted epitope (F(85-93); KYKNAVTEL) recognized by CD8(+) T cells from BALB/c mice. We enumerated the F-specific CD8(+) T cell response in the lungs of infected mice by flow cytometry using tetramer staining and intracellular cytokine synthesis. During primary infection, F(85-93)-specific effector CD8(+) T cells constitute approximately 4.8% of pulmonary CD8(+) T cells at the peak of the primary response (day 8), whereas matrix 2-specific CD8(+) T cells constituted approximately 50% of the responding CD8(+) T cell population in the lungs. When RSV F-immune mice undergo a challenge RSV infection, the F-specific CD8(+) T cell response is accelerated and dominates, whereas the primary response to the matrix 2 epitope in the lungs is reduced by approximately 20-fold. In addition, we found that activated F-specific effector CD8(+) T cells isolated from the lungs of RSV-infected mice exhibited a lower than expected frequency of IFN-gamma-producing CD8(+) T cells and were significantly impaired in ex vivo cytolytic activity compared with competent F-specific effector CD8(+) T cells generated in vitro. The significance of these results for the regulation of the CD8(+) T cell response to RSV is discussed.  相似文献   

9.
Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammation during RSV infection of adult mice, we studied the role of these cells in exacerbated inflammation following neonatal RSV sensitization/adult reinfection. Compared to mice undergoing primary infection as adults, neonatally sensitized mice showed enhanced airway fluid levels of interleukin-6 (IL-6), alpha interferon (IFN-α), CXCL1 (keratinocyte chemoattractant/KC), and tumor necrosis factor alpha (TNF-α) at 12 to 24 h after reinfection and IL-4, IL-5, IFN-γ, and CCL11 (eotaxin) at day 4 after reinfection. Weight loss during reinfection was accompanied by an initial influx of NK cells and granulocytes into the airways and lungs, followed by T cells. NK cell depletion during reinfection attenuated weight loss but did not alter T cell responses. Depletion of alveolar macrophages with inhaled clodronate liposomes reduced both NK and T cell numbers and attenuated weight loss. These findings indicate a hitherto unappreciated role for the innate immune response in governing the pathogenic recall responses to RSV infection.  相似文献   

10.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

11.
Zhang W  Tripp RA 《Journal of virology》2008,82(24):12221-12231
Respiratory syncytial virus (RSV) is a major cause of morbidity in infants, young children, and the elderly worldwide. Currently, there is no effective vaccine, and antiviral drugs to control infection are limited. RNA interference is a powerful tool amenable to development of antiviral drugs. Using small interfering RNA (siRNA) targeting the RSV P gene (siRNA-P), RSV replication can be silenced both in vitro and in a BALB/c model of RSV infection. In this study, we examine the effect of siRNA prophylaxis on the primary and memory immune response to RSV infection in mice. We show that mice prophylactically treated with siRNA-P to decrease but not eliminate RSV replication exhibit reduced pulmonary inflammation and lung pathogenesis and produce a robust anti-RSV memory response when subsequently challenged with RSV. The pulmonary T-cell memory response was characterized by high numbers of CD44hi CD62Llo CD4+ and CD8+ T cells, M2 peptide tetramer+ CD8+ T cells expressing gamma interferon, and an RSV-specific antibody response. The results support the hypothesis that siRNAs can be developed as effective antiviral drugs that can be used to reduce the viral load and parameters of pathogenesis without limiting the induction of the memory immune response.  相似文献   

12.
The memory CD4+ T cell response to the respiratory syncytial virus (RSV) attachment (G) protein in the lungs of primed BALB/c mice undergoing challenge pulmonary RSV infection is dominated by effector T cells expressing a single Vbeta-chain, Vbeta14. We have used Vbeta14 expression to examine the kinetics of the activation, accumulation, and acquisition of the effector activity of memory CD4+ T cells responding to pulmonary infection. This analysis revealed that proliferative expansion and effector CD4+ T cell differentiation preferentially occur in the respiratory tract following rapid activation within and egress from the lymph nodes draining the respiratory tract. These findings suggest that, in response to natural infection at a peripheral mucosal site such as the lungs, memory CD4+ T cell expansion and differentiation into activated effector T cells may occur predominantly in the peripheral site of infection rather than exclusively in the lymph nodes draining the site of infection.  相似文献   

13.
Respiratory syncytial virus (RSV) is a major cause of lower respiratory infection in young children and the elderly. Studies of mice suggest that RSV suppresses the effector activity of CD8 T cells and the development of pulmonary CD8 T cell memory, in which the impaired effector activity could be recovered by in vitro IL-2 treatment. To investigate the effect of in vivo IL-2 expression on RSV immunity, mice were infected with RSV followed by administration of replication-defective adenovirus expressing IL-2. The effector activity of RSV M2-specific CD8 T cells and the development of CD8 T cell memory in the lung was significantly increased by IL-2 expression. Furthermore, the Ab responses against RSV were augmented by IL-2. Interestingly, weight loss and illness caused by RSV challenge were substantially reduced by IL-2 priming, suggesting that the pathogenesis of RSV-related disease could be prevented by IL-2-mediated enhancement of beneficial immune responses. Thus, our results show that IL-2 has potential to be used as a vaccine adjuvant against RSV infection.  相似文献   

14.
Vaccination of children with a formalin-inactivated (FI) respiratory syncytial virus (RSV) vaccine led to exacerbated disease including pulmonary eosinophilia following a natural RSV infection. Immunization of BALB/c mice with FI-RSV or a recombinant vaccinia virus (vv) expressing the RSV attachment (G) protein (vvG) results in a pulmonary Th2 response and eosinophilia after RSV challenge that closely mimics the RSV vaccine-enhanced disease observed in humans. The underlying causes of RSV vaccine-enhanced disease remain poorly understood. We demonstrate here that RSV M2-specific CD8 T cells reduce the Th2-mediated pathology induced by vvG-immunization and RSV challenge in an IFN-gamma-independent manner. We also demonstrate that FI-RSV immunization does not induce a measurable RSV-specific CD8 T cell response and that priming FI-RSV-immunized mice for a potent memory RSV-specific CD8 T cell response abrogates pulmonary eosinophilia after subsequent RSV challenge. Our results suggest that the failure of the FI-RSV vaccine to induce a CD8 T cell response may have contributed to the development of pulmonary eosinophilia and augmented disease that occurred in vaccinated individuals.  相似文献   

15.
This study identifies memory cytotoxic T lymphocyte (CTL) epitopes to respiratory syncytial virus (RSV) in healthy South African adults and demonstrates the conservation of those epitopes in circulating field strains of RSV in South Africa. Thirty-seven healthy adults from a population with diverse HLA backgrounds were screened by gamma interferon (IFN-gamma) enzyme-linked immunospot for memory CTL activity in response to overlapping peptides representing the complete nucleoprotein (N) of RSV. Responses of more than 40 spot-forming cells/million cells were detectable in 21 individuals. The significant responses were further characterized, and 14-mer peptides were identified that induced cytolytic activity. Fine mapping of peptides with the highest cytolytic activity identified an HLA-B(*)08-restricted RSV-specific CTL epitope. The extended 14-mer peptide containing this epitope also induced lysis in the context of A(*)02-restricted target cells in some individuals. These HLA types are common in the target population; thus, the epitope is useful for studies of CTL responses to RSV in humans. The epitope was detected in healthy adults, reflecting the response generated in the course of previous natural RSV infection. We obtained a large panel of naturally occurring isolates of RSV to determine whether there was evidence of escape from CTL activity in circulating strains. We found that this epitope and a previously identified B(*)07-restricted N protein epitope were conserved in RSV field strains representing the diversity of circulating genotypes. This work suggests that escape from CTL activity is not common for this acute respiratory infection.  相似文献   

16.
The outcome of a viral infection or of immunization with a vaccine can be influenced by the local cytokine environment. In studies of experimental vaccines against respiratory syncytial virus (RSV), an increased stimulation of Th2 (T helper 2) lymphocytes was associated with increased immunopathology upon subsequent RSV infection. For this study, we investigated the effect of increased local expression of the Th2 cytokine interleukin-4 (IL-4) from the genome of a recombinant RSV following primary infection and after a challenge with wild-type (wt) RSV. Mice infected with RSV/IL-4 exhibited an accelerated pulmonary inflammatory response compared to those infected with wt RSV, although the wt RSV group caught up by day 8. In the first few days postinfection, RSV/IL-4 was associated with a small but significant acceleration in the expansion of pulmonary T lymphocytes specific for an RSV CD8(+) cytotoxic T-lymphocyte (CTL) epitope presented as a major histocompatibility complex class I tetramer. However, by day 7 the response of tetramer-positive T lymphocytes in the wt RSV group caught up and exceeded that of the RSV/IL-4 group. At all times, the CTL response of the RSV/IL-4 group was deficient in the production of gamma interferon and was nonfunctional for in vitro cell killing. The accelerated inflammatory response coincided with an accelerated accumulation and activation of pulmonary dendritic cells early in infection, but thereafter the dendritic cells were deficient in the expression of B7-1, which governs the acquisition of cytolytic activity by CTL. Following a challenge with wt RSV, there was an increase in Th2 cytokines in the animals that had previously been infected with RSV/IL-4 compared to those previously infected with wt RSV, but the CD8(+) CTL response and the amount of pulmonary inflammation were not significantly different. Thus, a strong Th2 environment during primary pulmonary immunization with live RSV resulted in early inflammation and a largely nonfunctional primary CTL response but had a minimal effect on the secondary response.  相似文献   

17.
Respiratory syncytial virus (RSV) is a major cause of morbidity from respiratory infection in infants, young children and the elderly. No effective vaccine against RSV is currently available and studies of the natural history of RSV infection suggest repeated infections with antigenically related virus strains are common throughout an individual's lifetime. We have studied the CD8+ T-cell response during experimental murine RSV infection and found that RSV inhibits the expression of effector activity by activated RSV-specific CD8+ T cells infiltrating the lung parenchyma and the development of pulmonary CD8+ T-cell memory by interfering with TCR-mediated signaling. These data suggest a possible mechanism to explain the limited duration of protective immunity in RSV infection.  相似文献   

18.
Interactions between fractalkine (CX3CL1) and its receptor, CX3CR1, mediate leukocyte adhesion, activation, and trafficking. The respiratory syncytial virus (RSV) G protein has a CX3C chemokine motif that can bind CX3CR1 and modify CXCL1-mediated responses. In this study, we show that expression of the RSV G protein or the G protein CX3C motif during infection is associated with reduced CX3CR1+ T cell trafficking to the lung, reduced frequencies of RSV-specific, MHC class I-restricted IFN-gamma-expressing cells, and lower numbers of IL-4- and CX3CL1-expressing cells. In addition, we show that CX3CR1+ cells constitute a major component of the cytotoxic response to RSV infection. These results suggest that G protein and the G protein CX3C motif reduce the antiviral T cell response to RSV infection.  相似文献   

19.
The cytotoxic T cell response in outbred mice infected with lymphocytic choriomeningitis virus (LCMV) is strain specific. The same is true for adoptive transfer of fatal LCM disease. The response of individuals within an outbred strain is completely cross-reactive, as shown by using immune lymphocytes and virus-infected macrophage targets from individual mice. Reciprocal exclusion of cytotoxic T cell activity between inbred and outbred mouse strains is the rule, the exception being one strain (H) known to have some C57BL ancestry. Immune T cells from one of 7 H mice specifically lysed LCMV-infected C57BL macrophages. Experiments with inbred mice have shown that only one allele need be shared at either the H-2K or H-2D locus for cytotoxic T cell activity to be manifest. Adoptive transfer protocols may thus be considered in outbred situations, providing that T cells are effective before allograft rejection occurs. Also, the LCMV cytotoxic T cell assay may be useful for determining the degree of H-2 variability in wild mouse populations, as novel H-2 types can be detected and mice need not be congenic.  相似文献   

20.
Respiratory syncytial virus (RSV) is a ubiquitous virus that preferentially infects airway epithelial cells, causing asthma exacerbations and severe disease in immunocompromised hosts. Acute RSV infection induces inflammation in the lung. Thymus- and activation-regulated chemokine (TARC) recruits Th2 cells to sites of inflammation. We found that acute RSV infection of BALB/c mice increased TARC production in the lung. Immunization of BALB/c mice with individual RSV proteins can lead to the development of Th1- or Th2-biased T cell responses in the lung after RSV infection. We primed animals with a recombinant vaccinia virus expressing either the RSV fusion (F) protein or the RSV attachment (G) protein, inducing Th1- and Th2-biased pulmonary memory T cell responses, respectively. After RSV infection, TARC production significantly increased in the vaccinia virus G-primed animals only. These data suggest a positive feedback loop for TARC production between RSV infection and Th2 cytokines. RSV-infected lung epithelial cells cultured with IL-4 or IL-13 demonstrated a marked increase in the production of TARC. The synergistic effect of RSV and IL-4/IL-13 on TARC production reflected differential induction of NF kappa B and STAT6 by the two stimuli (both are in the TARC promoter). These findings demonstrate that RSV induces a chemokine TARC that has the potential to recruit Th2 cells to the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号