首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, 15 to 20 kinesins are thought to mediate vesicle transport. Little is known about the identity of vesicles moved by each kinesin or the functional significance of such diversity. To characterize the transport mediated by different kinesins, we developed a novel strategy to visualize vesicle‐bound kinesins in living cells. We applied this method to cultured neurons and systematically determined the localization and transport parameters of vesicles labeled by different members of the Kinesin‐1, ‐2, and ‐3 families. We observed vesicle labeling with nearly all kinesins. Only six kinesins bound vesicles that undergo long‐range transport in neurons. Of these, three had an axonal bias (KIF5B, KIF5C and KIF13B), two were unbiased (KIF1A and KIF1Bβ), and one transported only in dendrites (KIF13A). Overall, the trafficking of vesicle‐bound kinesins to axons or dendrites did not correspond to their motor domain preference, suggesting that on‐vesicle regulation is crucial for kinesin targeting. Surprisingly, several kinesins were associated with populations of somatodendritic vesicles that underwent little long‐range transport. This assay should be broadly applicable for investigating kinesin function in many cell types.  相似文献   

2.
3.
4.
Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.  相似文献   

5.
Muresan  Virgil 《Brain Cell Biology》2000,29(11-12):799-818
A large number of membrane-bounded organelles, protein complexes, and mRNAs are transported along microtubules to different locations within the neuronal axon. Axonal transport in the anterograde direction is carried out by members of a superfamily of specialized motor proteins, the kinesins. All kinesins contain a conserved motor domain that hydrolyses ATP to generate movement along microtubules. Regions outside the motor domain are responsible for cargo binding and regulation of motor activity. Present in a soluble, inactive form in the cytoplasm, kinesins are activated upon cargo binding. Selective targeting of different types of kinesin motors to specific cargoes is directed by amino acid sequences situated in their variable tails. Cargo proteins with specific function at their destination, bind directly to specific kinesins for transport. Whereas most kinesins move to microtubule plus-ends, a small number of them move to microtubule minus-ends, and may participate in retrograde axonal transport. Axonal transport by kinesins has a logic: Fully assembled, multisubunit, functional complexes (e.g., ion channel complexes, signaling complexes, RNA-protein complexes) are transported to their destination by kinesin motors that interact transiently (i.e., during transport only) with one of the complexes' subunits.  相似文献   

6.
Microtubule-dependent transport is most often driven by collections of kinesins and dyneins that function in either a concerted fashion or antagonistically. Several lines of evidence suggest that cargo transport may not be influenced appreciably by the combined action of multiple kinesins. Yet, as in previous optical trapping experiments, the forces imposed on cargos will vary spatially and temporally in cells depending on a number of local environmental factors, and the influence of these conditions has been largely overlooked. Here, we characterize the dynamics of structurally defined complexes containing multiple kinesins under the controlled loads of an optical force clamp. While demonstrating that there are generic kinetic barriers that restrict the ability of multiple kinesins to cooperate productively, the spatial and temporal properties of applied loads is found to play an important role in the collective dynamics of multiple motor systems. We propose this dependence has implications for intracellular transport processes, especially for bidirectional transport.  相似文献   

7.
Polarized kinesin‐driven transport is crucial for development and maintenance of neuronal polarity. Kinesins are thought to recognize biochemical differences between axonal and dendritic microtubules in order to deliver their cargoes to the appropriate domain. To identify kinesins that mediate polarized transport, we prepared constitutively active versions of all the kinesins implicated in vesicle transport and expressed them in cultured hippocampal neurons. Seven kinesins translocated preferentially to axons and five translocated into both axons and dendrites. None translocated selectively to dendrites. Highly homologous members of the same subfamily displayed distinctly different translocation preferences and were differentially regulated during development. By expressing chimeric kinesins, we identified two microtubule‐binding elements within the motor domain that are important for selective translocation. We also discovered elements in the dimerization domain of kinesin‐2 motors that contribute to their selective translocation. These observations indicate that selective interactions between kinesin motor domains and microtubules can account for polarized transport to the axon, but not for selective dendritic transport.  相似文献   

8.
驱动蛋白(kinesin)是以微管为轨道的分子马达,其催化ATP水解为ADP,将贮藏在ATP分子中的化学能高效地转化为机械能,在细胞形态建成、细胞分裂、细胞运动、胞内物质运输和信号转导等多种生命活动中发挥重要作用。对植物驱动蛋白的研究落后于动物和真菌,其原因不仅由于植物进化出独有的驱动蛋白家族,而且其家族成员数量远多于动物驱动蛋白。该文主要总结了驱动蛋白在微管阵列动态组织,包括周质微管和有丝分裂早前期微管带、纺锤体及成膜体中的角色和功能,以及其对植物生理活动的调控作用。同时对重要经济作物大豆(Glycine max)中的驱动蛋白进行了系统分析、分类及功能预测,发现大豆驱动蛋白数量庞大。结合公共数据库中大豆转录组数据,对部分大豆驱动蛋白进行功能预测,以期对大豆及其它作物驱动蛋白功能研究提供线索和启示。  相似文献   

9.

Background

Kinesins constitute a large superfamily of motor proteins in eukaryotic cells. They perform diverse tasks such as vesicle and organelle transport and chromosomal segregation in a microtubule- and ATP-dependent manner. In recent years, the genomes of a number of eukaryotic organisms have been completely sequenced. Subsequent studies revealed and classified the full set of members of the kinesin superfamily expressed by these organisms. ForDictyostelium discoideum, only five kinesin superfamily proteins (Kif's) have already been reported.

Results

Here, we report the identification of thirteen kinesin genes exploiting the information from the raw shotgun reads of theDictyostelium discoideumgenome project. A phylogenetic tree of 390 kinesin motor domain sequences was built, grouping theDictyosteliumkinesins into nine subfamilies. According to known cellular functions or strong homologies to kinesins of other organisms, four of theDictyosteliumkinesins are involved in organelle transport, six are implicated in cell division processes, two are predicted to perform multiple functions, and one kinesin may be the founder of a new subclass.

Conclusion

This analysis of theDictyosteliumgenome led to the identification of eight new kinesin motor proteins. According to an exhaustive phylogenetic comparison,Dictyosteliumcontains the same subset of kinesins that higher eukaryotes need to perform mitosis. Some of the kinesins are implicated in intracellular traffic and a small number have unpredictable functions.  相似文献   

10.
Seeger MA  Zhang Y  Rice SE 《Proteins》2012,80(10):2437-2446
Kinesin motor proteins transport a wide variety of molecular cargoes in a spatially and temporally regulated manner. Kinesin motor domains, which hydrolyze ATP to produce a directed mechanical force along a microtubule, are well conserved throughout the entire superfamily. Outside of the motor domains, kinesin sequences diverge along with their transport functions. The nonmotor regions, particularly the tails, respond to a wide variety of structural and molecular cues that enable kinesins to carry specific cargoes in response to particular cellular signals. Here, we demonstrate that intrinsic disorder is a common structural feature of kinesins. A bioinformatics survey of the full‐length sequences of all 43 human kinesins predicts that significant regions of intrinsically disordered residues are present in all kinesins. These regions are concentrated in the nonmotor domains, particularly in the tails and near sites for ligand binding or post‐translational modifications. In order to experimentally verify these predictions, we expressed and purified the tail domains of kinesins representing three different families (Kif5B, Kif10, and KifC3). Circular dichroism and NMR spectroscopy experiments demonstrate that the isolated tails are disordered in vitro, yet they retain their functional microtubule‐binding activity. On the basis of these results, we propose that intrinsic disorder is a common structural feature that confers functional specificity to kinesins. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Members of the kinesin superfamily are involved in key functions during intracellular transport and cell division. Their involvement in cell division makes certain kinesins potential targets for drug development in cancer chemotherapy. The two most advanced kinesin targets are Eg5 and CENP-E with inhibitors in clinical trials. Other mitotic kinesins are also being investigated for their potential as prospective drug targets. One recently identified novel potential cancer therapeutic target is the Mitotic kinesin-like protein 2 (MKLP-2), a member of the kinesin-6 family, which plays an essential role during cytokinesis. Previous studies have shown that inhibition of MKLP-2 leads to binucleated cells due to failure of cytokinesis. We have previously identified compound 1 (paprotrain) as the first selective inhibitor of MKLP-2. Herein we describe the synthesis and biological evaluation of new analogs of 1. Our structure–activity relationship (SAR) study reveals the key chemical elements in the paprotrain family necessary for MKLP-2 inhibition. We have successfully identified one MKLP-2 inhibitor 9a that is more potent than paprotrain. In addition, in vitro analysis of a panel of kinesins revealed that this compound is selective for MKLP-2 compared to other kinesins tested and also does not have an effect on microtubule dynamics. Upon testing in different cancer cell lines, we find that the more potent paprotrain analog is also more active than paprotrain in 10 different cancer cell lines. Increased selectivity and higher potency is therefore a step forward toward establishing MKLP-2 as a potential cancer drug target.  相似文献   

12.
Identifying the kinesin motors that interact with different vesicle populations is a longstanding and challenging problem with implications for many aspects of cell biology. Here we introduce a new live-cell assay to assess kinesin-vesicle interactions and use it to identify kinesins that bind to vesicles undergoing dendrite-selective transport in cultured hippocampal neurons. We prepared a library of "split kinesins," comprising an axon-selective kinesin motor domain and a series of kinesin tail domains that can attach to their native vesicles; when the split kinesins were assembled by chemical dimerization, bound vesicles were misdirected into the axon. This method provided highly specific results, showing that three Kinesin-3 family members-KIF1A, KIF13A, and KIF13B-interacted with dendritic vesicle populations. This experimental paradigm allows a systematic approach to evaluate motor-vesicle interactions in living cells.  相似文献   

13.
All eukaryotic cells contain large numbers of motor proteins (kinesins, dyneins and myosins), each of which appears to carry out a specialized force-generating function within the cell. They are known to have roles in muscle contraction, ciliary movement, organelle and vesicle transport, mitosis and cytokinesis. These motor proteins operate on different cytoskeletal filaments; myosins move along actin filaments, and kinesins and dyneins along microtubules. Recently published crystal structures of the motor domains of two members of the kinesin superfamily reveal that they share the same overall fold that is also found at the core of the larger myosin motor. This suggests that they may share a common mechanism as well as a common ancestry.  相似文献   

14.
Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.

A comprehensive study reveals that kinesins in the malaria parasite Plasmodium have diverse cellular roles and locations, including functions in spindle assembly during proliferation, axoneme formation in flagellum biogenesis, and determining the apical morphology of the cell.  相似文献   

15.
Dictyostelium discoideum, a unicellular eukaryote amenable to both biochemical and genetic dissection, provides an attractive system for studying microtubule-based transport. In this work, we have identified microtubule-based motor activities in Dictyostelium cell extracts and have partially purified a protein that induces microtubule translocation along glass surfaces. This protein, which sediments at approximately 9S in sucrose density gradients and is composed of a 105 kd polypeptide, generates anterograde movement along microtubules that is insensitive to 5 mM NEM (N-ethyl-maleimide) but sensitive to 200 microM vanadate, and has similar nucleotide-dependent microtubule binding properties to those of kinesins purified from mammals, sea urchin and Drosophila. This kinesin-like molecule from Dictyostelium, however, is immunologically distinct from bovine and squid neuronal kinesins and supports microtubule movement on glass at four-fold greater velocities (2.0 versus 0.5 microns/sec). Furthermore, AMP-PNP (adenylyl imidodiphosphate), which promotes attachment of previously characterized kinesins to microtubules, decreases the affinity of the Dictyostelium kinesin homolog for microtubules. Thus, an AMP-PNP-induced rigor binding may not be a characteristic of kinesins from lower eukaryotes.  相似文献   

16.
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.  相似文献   

17.
In eukaryotic cells members of the kinesin family mediate intracellular transport by carrying cellular cargo on microtubule tracks. The nematode Caenorhabditis elegans genome encodes 21 members of the kinesin family, which show significant homology to their mammalian orthologs. Based on motor domain sequence homology and placement of the motor domain in the protein, the C. elegans kinesins have been placed in eight distinct groups; members of which participate in embryonic development, protein transport, synaptic membrane vesicles movement and in the axonal growth. Among 21 kinesins, at least 11 play a central role in spindle movement and chromosomal segregation. Understanding the function of C. elegans kinesins and related proteins may help navigate through the intricacies of intracellular traffic in a simple animal.  相似文献   

18.
Zhu C  Dixit R 《Protoplasma》2012,249(4):887-899
Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. We emphasize the conserved and novel functions of plant kinesins in the organization and function of the different microtubule arrays.  相似文献   

19.
Kinesins are molecular motors that transport various cargoes along microtubule tracks using energy derived from ATP hydrolysis. Although the motor domains of kinesins are structurally similar, the family contains members that move on microtubules in opposite directions. Recent biochemical and biophysical studies of several kinesins make it possible to identify structural elements responsible for the different directionality, suggesting that reversal of the motor movement can be achieved through small, local changes in the protein structure.  相似文献   

20.
The number of microtubule motors attached to vesicles, organelles, and other subcellular commodities is widely believed to influence their motile properties. There is also evidence that cells regulate intracellular transport by tuning the number and/or ratio of motor types on cargos. Yet, the number of motors responsible for cargo motion is not easily characterized, and the extent to which motor copy number affects intracellular transport remains controversial. Here, we examined the load-dependent properties of structurally defined motor assemblies composed of two kinesin-1 molecules. We found that a group of kinesins can produce forces and move with velocities beyond the abilities of single kinesin molecules. However, such capabilities are not typically harnessed by the system. Instead, two-kinesin assemblies adopt a range of microtubule-bound configurations while transporting cargos against an applied load. The binding arrangement of motors on their filament dictates how loads are distributed within the two-motor system, which in turn influences motor-microtubule affinities. Most configurations promote microtubule detachment and prevent both kinesins from contributing to force production. These results imply that cargos will tend to be carried by only a fraction of the total number of kinesins that are available for transport at any given time, and provide an alternative explanation for observations that intracellular transport depends weakly on kinesin number in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号