首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study was a comparative analysis to the degree of stability of human epidermal cells found at different stages of differentiation to low temperatures. The effect of different subzero temperatures of liquid nitrogen vapor on keratinocytes found both in human skin fragments and as isolated cells extracted from skin fragments has been studied. The degree of stability of epidermal cells low temperatures was evaluated by their ability to form a multilayer stratum in culture; hence this phenomenon explains the survival of a sufficient amount of proliferative cells after exposure to subzero temperatures. Quantitative analysis of the ratio of epidermal stem, transitory and differentiated cells in a population of viable cells before and after exposure to low temperatures were determined using antibodies corresponding to their different stages of differentiation. The results of this research show that the stability of human epidermal cells to low temperature differs depending on their stage of differentiation both in situ and in vitro. Epidermal stem cells and transitory cells are more stable than differentiated cells.  相似文献   

2.
The technique developed in our laboratory allows us to culture multilayered, stratified sheets of human keratinocytes, which can be used to cover the burn wounds of patients. Organization of cells in these cultures resembles stratum germinativum and stratum spinosum but there are only a few fully keratinized cells and the stratum corneum is not developed. Since the fully differentiated sheets may offer additional advantages as epidermal transplants, attempts were made to enhance the degree of differentiation in vitro. In the present study sodium-N-butyrate (NaB) was used as a differentiating agent and its effect on the cell cycle and cytoarchitecture of epidermal cells was investigated. Incubation of keratinocytes in the presence of 2.5 mM NaB induced the appearance of enucleated cornified envelopes, covering approximately 70-80% of the surface of the cultures. Their appearance correlated with a decrease in expression of keratin K13, previously shown to be inhibited during terminal differentiation of human keratinocytes. An increase in transglutaminase transferase activity was also observed. The induction of cornified layers also correlated with an increase in the amount of microfilament (MF)-associated actin. NaB also induced changes in the cell cycle distribution of the keratinocyte cultures. A decrease in the proportion of S and G1B phase cells was paralleled by an increase in G1A cells, maximally expressed 30-48 h following addition of the inducer. Interestingly, NaB also induced a cell arrest in G2 phase. These cell cycle perturbations preceded the onset of keratinocyte differentiation. The results indicate that the enhanced differentiation of human keratinocytes in the presence of NaB may serve as a means to produce epidermal sheets with improved properties for transplantation in a clinical setting. It also serves as an in vitro model system to study the interrelationships between biochemical events and cell cycle changes accompanying differentiation.  相似文献   

3.
《The Journal of cell biology》1996,135(6):1879-1887
The Distal-less-related homeodomain gene Dlx3 is expressed in terminally differentiated murine epidermal cells. Ectopic expression of this gene in the basal cell layer of transgenic skin results in a severely abnormal epidermal phenotype and leads to perinatal lethality. The basal cells of affected mice ceased to proliferate, and expressed the profilaggrin and loricrin genes which are normally transcribed only in the latest stages of epidermal differentiation. All suprabasal cell types were diminished and the stratum corneum was reduced to a single layer. These data indicate that Dlx3 misexpression results in transformation of basal cells into more differentiated keratinocytes, suggesting that this homeoprotein is an important regulator of epidermal differentiation.  相似文献   

4.
Abstract The technique developed in our laboratory allows us to culture multilayered, stratified sheets of human keratinocytes, which can be used to cover the burn wounds of patients. Organization of cells in these cultures resembles stratum germinativum and stratum spinosum but there are only a few fully keratinized cells and the stratum corneum is not developed. Since the fully differentiated sheets may offer additional advantages as epidermal transplants, attempts were made to enhance the degree of differentiation in vitro. In the present study sodium-N-butyrate (NaB) was used as a differentiating agent and its effect on the cell cycle and cytoarchitecture of epidermal cells was investigated. Incubation of keratinocytes in the presence of 2.5 mM NaB induced the appearance of enucleated cornified envelopes, covering approximately 70–80% of the surface of the cultures. Their appearance correlated with a decrease in expression of keratin K13, previously shown to be inhibited during terminal differentiation of human keratinocytes. An increase in transglutaminase transferase activity was also observed. The induction of cornified layers also correlated with an increase in the amount of microfilament (MF)-associated actin. NaB also induced changes in the cell cycle distribution of the keratinocyte cultures. A decrease in the proportion of S and G1B phase cells was paralleled by an increase in G1A cells, maximally expressed 30–48 h following addition of the inducer. Interestingly, NaB also induced a cell arrest in G2 phase. These cell cycle perturbations preceded the onset of keratinocyte differentiation. The results indicate that the enhanced differentiation of human keratinocytes in the presence of NaB may serve as a means to produce epidermal sheets with improved properties for transplantation in a clinical setting. It also serves as an in vitro model system to study the interrelationships between biochemical events and cell cycle changes accompanying differentiation.  相似文献   

5.
The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown.We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin.These data suggest sFRP4 promotes epidermal differentiation.  相似文献   

6.
Four spontaneously transformed keratinocyte lines (HELP I-IV) were raised from primary cultures of mouse epidermal cells grown on gas-permeable (Petriperm) dishes. Although tumorigenic, these cell lines still expressed the differentiated phenotype under mesenchymal influence in vivo in a fashion similar to normal cells and in contrast to previous observations on other transformed cell lines. Initially, after transplantation onto adult mice, HELP cells generally formed well organized ortho-keratinizing epithelia closely resembling those of normal epidermal cells. Later, dysplastic epithelia and papilloma-like structures developed and cells invaded subcutaneous host tissue. When injected subcutaneously into newborn syngeneic mice, all four cell lines gave rise to differentiated carcinomas at high frequency. Keratinized metastases were detected in the lung with HELP I, albeit at low frequency. Although the four HELP cell lines differed morphologically and biochemically in their degree of ortho-keratinization, no inverse relationship to their malignant potential was evident. In contrast to cell cultures, HELP transplants and tumors expressed epidermis-type "suprabasal" keratins. Metabolic labeling and electrophoresis on one and two-dimensional gels revealed both the basic 67 kilodaltons (kDa) and acidic 58 kDa components, including presumptive derivatives analogous to those observed in epidermal stratum corneum. However, associated with alterations in tissue architecture, the spatial control of keratin expression was gradually lost in papilloma-like and invading transplants and tumors, as demonstrated by indirect immunofluorescence microscopy (IIF). Thus, while cell differentiation appeared virtually normal, the progressive disturbances in tissue differentiation indicate important changes in the responsiveness of these malignant keratinocytes to environmental conditions.  相似文献   

7.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

8.
Based on a previous study of the stability of a heterogenous population of keratinocytes against cold depending on their degree of differentiation, we studied in vitro the stability of rat bone marrow stem cells (BMSCs) against cold before and after their differentiation in the adipogenic or osteogenic direction. It was shown that, after the induction of differentiation, BMSCs were least stable against the action of low temperatures than the undifferentiated cells. The obtained data can serve as a basis for the further study of processes and mechanisms that affect the stability of BMSCs against cold depending on their degree of differentiation.  相似文献   

9.
Epidermal differentiation results in the formation of the extracellular lipid barrier in the stratum corneum, which mainly consists of ceramides, free fatty acids, and cholesterol. Differentiating keratinocytes of the stratum granulosum synthesize a series of complex long-chain ceramides and glucosylceramides with different chain lengths and hydroxylation patterns at intracellular membranes of the secretory pathway. Formation of complex extracellular ceramides parallels the transition of keratinocytes from the stratum granulosum to the stratum corneum, where their precursors, complex glucosylceramides and sphingomyelin, are secreted and exposed to extracellular lysosomal lipid hydrolases. Submerged cultures used so far showed a reduced ceramide content compared to the native epidermis or the air-exposed, organotypic culture system. In order to investigate the sphingolipid metabolism during keratinocyte differentiation, we optimized a simple cell culture system to generate the major barrier sphingolipids. This optimized model is based on the chemically well-defined serum-free MCDB medium. At low calcium ion concentrations (0.1mM), keratinocytes proliferate and synthesize mainly Cer(NS) and a small amount of Cer(NP). Supplementation of the MCDB cell culture medium with calcium ions (1.1mM) and 10 microM linoleic acid triggered differentiation of keratinocytes and synthesis of a complex pattern of free and covalently bound ceramides as found in native epidermis or air-exposed organotypic cultures, though at a reduced level. The mRNA levels of the differentiation markers keratin 10 and profilaggrin increased, as well as those of ceramide glucosyltransferase and glucosylceramide-beta-glucosidase. The described culture system was thus suitable for biochemical studies of the sphingolipid metabolism during keratinocyte differentiation. The addition of serum or vitamin A to the medium resulted in a decrease in ceramide and glucosylceramide content. Lowering the medium pH to 6, while maintained cell viability, led to an increase in the processing of probarrier lipids glucosylceramide and sphingomyelin to free ceramides and protein-bound ceramide Cer(OS).  相似文献   

10.
11.
The cathepsins B, H and L, lysosomal cysteine proteinases, play a major role in intracellular protein degradation. These proteinase activities and expressions were examined in a Ca2+ regulated epidermal culture system which consists of two morphological cell types: undifferentiated cells grown in low Ca2+ (0.1 mM concentration) and differentiated cells grown in high Ca2+ (1.8 mM concentration), respectively. Cathepsin B and L activities of the differentiated cells showed a several-fold increase compared to that of the undifferentiated cells. In addition, by using CM-cellulose column chromatography, cathepsin B and L were separated and the level of cathepsin L activity increased significantly. Cathepsin B, L and H were also detected by using an immunoblotting procedure in which their bands were expressed after differentiation was induced by the increasing calcium concentration. Cathepsin L activity and immunostaining intensity reached a maximum at 1 or 2 days of differentiation. In contrast, cystatin alpha (an endogenous inhibitor of cysteine-dependent cathepsins) appeared in the final stage of differentiation. These results indicate that the expression of epidermal cathepsins and their endogenous inhibitor are involved in part of the program of cell differentiation and the terminal differentiation process in cultured rat keratinocytes.  相似文献   

12.
Involucrin is a precursor protein of detergent-insoluble cornified envelope and a marker of terminal differentiation of epidermal keratinocytes. To quantify differentiation of cultured human keratinocytes, the population of involucrin-positive cells was estimated by immunofluorescent staining using anti-involucrin antibody and flow cytometry. Normal human keratinocytes were cultured under three conditions for induction of differentiation: low Ca2+ concentration (0.1 mM Ca2+), high Ca2+ concentration (1.8 mM Ca2+), and high Ca2+ concentration with 10% fetal bovine serum (FBS). The relationship between fluorescence intensity and involucrin synthesis was confirmed by visual examination of sorted cells. The population of involucrin-positive cells increased from 7.2 to 18.1% by elevating Ca2+ concentration and to 37.0% by adding FBS. The extent of cornified envelope formation under the same culture conditions was consistent with the estimation of involucrin-positive cells. The cytofluorographic analysis of involucrin synthesis made it possible to determine the number of differentiated cells in a large number of samples precisely and reliably. Thus, it is a useful method for quantifying keratinocyte differentiation.  相似文献   

13.
Epidermal growth factor is an important element in maintaining keratinocyte proliferation and maturation. To evaluate its effect on keratinocyte growth in vitro, human foreskins were cultured. The epidermal keratinocyte growth in culture was separated into two stages by a conditional medium: the proliferation stage, in which the cells were maintained in a monolayer; and the differentiation stage, in which the cells grew to stratification and keratinization. The keratinocytes were cultured in various concentrations of epidermal growth factor, and their morphology and growth behavior were closely observed. Our results demonstrated that cultured keratinocytes grew in a confluent layer under the influence of epidermal growth factor. In contrast, in a culture without epidermal growth factor, the proliferation rate of cultured keratinocytes slowed down and eventually the cells stopped growing. During serum stimulation, with or without additional exogenous epidermal growth factor, the cultured keratinocytes grew continuously to the normal terminal differentiation. Under this two-stage culture model, the cultured keratinocytes could grow into an intact sheet of graftable epidermis.  相似文献   

14.
Human keratinocytes grown on deepidermized dermis (DED) are able to reconstruct a morphologically normal stratified and keratinized epidermis. This culture system is suitable for studying in vitro the effects of various hormones and factors on epidermal differentiation, and the goal of the present work was to study the effect of vitamin D. We found that the hormonal form of vitamin D3, 1,25-dihydroxyvitamin D3, produced very specific alterations in epidermal architecture in a dose-dependent manner, consisting of significant reduction of the nucleated layers of the epithelium, but not of the stratum corneum, which was instead slightly thickened. The study of stage-specific differentiation markers showed that the two extreme layers of epidermis, i.e. the basal layer and the stratum corneum, were unaffected by the hormone, but that the reduction involved specifically the intermediate differentiation compartment, i.e. the spinous and granular layers. It was shown that the reduction of the intermediate compartment provoked by 1,25-dihydroxyvitamin D3 is not due to a block in the proliferation of basal cells or to inhibition of their differentiation into suprabasal cells, but to stimulation of the terminal differentiation of suprabasal cells into corneocytes.  相似文献   

15.
The epidermis is a stratified squamous epithelium in which keratinocytes progressively undergo terminal differentiation towards the skin surface leading to programmed cell death. In this respect we studied the role of caspases. Here, we show that caspase-14 synthesis in the skin is restricted to differentiating keratinocytes and that caspase-14 processing is associated with terminal epidermal differentiation. The pro-apoptotic executioner caspases-3, -6, and -7 are not activated during epidermal differentiation. Caspase-14 does not participate in apoptotic pathways elicited by treatment of differentiated keratinocytes with various death-inducing stimuli, in contrast to caspase-3. In addition, we show that non-cornifying oral keratinocyte epithelium does not express caspase-14 and that the parakeratotic regions of psoriatic skin lesions contain very low levels of caspase-14 as compared to normal stratum corneum. These observations strongly suggest that caspase-14 is involved in the keratinocyte terminal differentiation program leading to normal skin cornification, while the executioner caspases are not implicated. Cell Death and Differentiation (2000) 7, 1218 - 1224  相似文献   

16.
Abstract Human mesenchymal stem cells (hMSC) are able to differentiate into mature cells of various mesenchymal tissues. Recent studies have reported that hMSC may even give rise to cells of ectodermal origin. This indication of plasticity makes hMSC a promising donor source for cell-based therapies. This study explores the differentiation potential of hMSC in a tissue-specific microenvironment simulated in vitro . HMSC were cultured air-exposed on dermal equivalents (DEs) consisting of collagen types I and III with dermal fibroblasts and subjected to conditions similar to those used for tissue engineering of skin with keratinocytes. Culture conditions were additionally modified by pre-treating the cells with 5-azacytidine or supplementing the medium with all trans retinoic acid (RA). HMSC were capable of adaptation to epidermis-specific conditions without losing their mesenchymal multipotency. However, despite the viability and evident three-dimensional epidermis-like growth pattern, hMSC showed a persistent expression of mesenchymal but not of epithelial markers, thus indicating a lack of epidermal (trans) differentiation. Further, electron microscopy and immunohistochemical analyses demonstrated that hMSC cultured under epidermis-specific conditions adopted a myofibroblastic phenotype and function, promoted in particular by air exposure. In conclusion, multipotent hMSC failed to differentiate into E-cadherin- or cytokeratin-expressing cells under optimized organotypic culture conditions for keratinocytes but differentiated into myofibroblast-like cells contracting the extracellular matrix, a phenomenon that was enhanced by RA and 5-azacytidine. These results indicate that hMSC might contribute to wound-healing processes by extracellular matrix reorganization and wound contraction but not by differentiation into keratinocytes.  相似文献   

17.
Human keratinocytes are difficult to isolate and have a limited lifespan. Traditionally, immortalised keratinocyte cell lines are used in vitro due to their ability to bypass senescence and survive indefinitely. However these cells do not fully retain their ability to differentiate in vitro and they are unable to form a normal stratum corneum in organotypic culture. Here we aimed to generate a pool of phenotypically similar keratinocytes from human donors that could be used in monolayer culture, without a fibroblast feeder layer, and in 3D human skin equivalent models. Primary human neonatal epidermal keratinocytes (HEKn) were cultured in low calcium, (0.07mM) media, +/-10μM Y-27632 ROCK inhibitor (HEKn-CaY). mRNA and protein was extracted and expression of differentiation markers Keratin 14 (K14), Keratin 10 (K10) and Involucrin (Inv) assessed by qRT-PCR and Western blotting. The differentiation potential of the HEKn-CaY cultures was assessed by increasing calcium levels and removing the Y-27632 for 72hrs prior to assessment of K14, K10 and Inv. The ability of the HEKn-CaY, to form a stratified epithelium was assessed using a human skin equivalent (HSE) model in the absence of Y-27632. Increased proliferative capacity, expansion potential and lifespan of HEKn was observed with the combination of low calcium and 10μM ROCK inhibitor Y-27632. The removal of Y-27632 and the addition of high calcium to induce differentiation allowed the cells to behave as primary keratinocytes even after extended serial passaging. Prolonged lifespan HEK-CaYs were capable of forming an organised stratified epidermis in 3D HSE cultures, demonstrating their ability to fully stratify and retain their original, primary characteristics. In conclusion, the use of 0.07mM Calcium and 10μM Y-27632 in HEKn monocultures provides the opportunity to culture primary human keratinocytes without a cell feeder layer for extended periods of culture whilst retaining their ability to differentiate and form a stratified epithelium.  相似文献   

18.
Using specific monoclonal antibodies (DE-K10 and DE-SCK respectively), the expression of some differentiation-related epidermal keratins was studied in 38 human vulvar squamous carcinomas. In the epidermis, expression of keratin 10 (K10) strictly paralleled the extent of differentiation; it was absent in the basal layer, appeared in the first suprabasal layers and increased in concentration towards the granular layer. However, K10 was rarely detected (1 case out of 12) in early stages of vulvar squamous carcinomas (tumours less than 2 cm, clinical stage I) regardless of the tumour grade. In larger and more advanced tumours (greater than 2 cm, clinical stages II and III), K10 was detected in 21 out of 26 cases. Its expression appeared to be related to maturation of malignant keratinocytes, being preferentially detected in more-differentiated parts. Occasionally however, cells that did not show histological signs of keratinisation were also K10-positive. Modified stratum corneum keratins (recognized specifically by monoclonal antibody DE-SCK) were detected in the most keratinized areas (horn pearls and their close vicinity) of some K10-positive tumours, i.e., in a pattern close to their normal expression in terminally differentiated epidermal cells. These data suggest differences in the regulation of K10 expression during the differentiation processes in the normal keratinising squamous epithelium and in squamous carcinomas. While the normal pattern of vulvar epithelial differentiation is accompanied by an increasing expression of K10, malignant keratinocytes, also when these are histologically moderately or well differentiated, cease expressing this keratin in the early stages of tumour development.  相似文献   

19.
Lei XH  Ning LN  Cao YJ  Liu S  Zhang SB  Qiu ZF  Hu HM  Zhang HS  Liu S  Duan EK 《PloS one》2011,6(11):e26603
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.  相似文献   

20.
AKT activity has been reported in the epidermis associated with keratinocyte survival and differentiation. We show in developing skin that Akt activity associates first with post-proliferative, para-basal keratinocytes and later with terminally differentiated keratinocytes that are forming the fetal stratum corneum. In adult epidermis the dominant Akt activity is in these highly differentiated granular keratinocytes, involved in stratum corneum assembly. Stratum corneum is crucial for protective barrier activity, and its formation involves complex and poorly understood processes such as nuclear dissolution, keratin filament aggregation, and assembly of a multiprotein cell cornified envelope. A key protein in these processes is filaggrin. We show that one target of Akt in granular keratinocytes is HspB1 (heat shock protein 27). Loss of epidermal HspB1 caused hyperkeratinization and misprocessing of filaggrin. Akt-mediated HspB1 phosphorylation promotes a transient interaction with filaggrin and intracellular redistribution of HspB1. This is the first demonstration of a specific interaction between HspB1 and a stratum corneum protein and indicates that HspB1 has chaperone activity during stratum corneum formation. This work demonstrates a new role for Akt in epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号