首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Terminal restriction fragment length polymorphism (T-RFLP) analysis has the potential to be useful for comparisons of complex bacterial communities, especially to detect changes in community structure in response to different variables. To do this successfully, systematic variations have to be detected above method-associated noise, by standardizing data sets and assigning confidence estimates to relationships detected. We investigated the use of different standardizing methods in T-RFLP analysis of PCR-amplified 16S rRNA genes to elucidate the similarities between the bacterial communities in 17 soil and sediment samples. We developed a robust method for standardizing data sets that appeared to allow detection of similarities between complex bacterial communities. We term this the variable percentage threshold method. We found that making conclusions about the similarities of complex bacterial communities from T-RFLP profiles generated by a single restriction enzyme (RE) may lead to erroneous conclusions. Instead, the use of multiple REs, each individually, to generate multiple data sets allowed us to determine a confidence estimate for groupings of apparently similar communities and at the same time minimized the effects of RE selection. In conjunction with the variable percentage threshold method, this allowed us to make confident conclusions about the similarities of the complex bacterial communities in the 17 different samples.  相似文献   

2.
Although it is widely believed that horizontal patchiness exists in microbial sediment communities, determining the extent of variability or the particular members of the bacterial community which account for the observed differences among sites at various scales has not been routinely demonstrated. In this study, horizontal heterogeneity was examined in time and space for denitrifying bacteria in continental shelf sediments off Tuckerton, N.J., at the Rutgers University Long-Term Ecosystem Observatory (LEO-15). Characterization of the denitrifying community was done using PCR amplification of the nitrous oxide reductase (nosZ) gene combined with terminal restriction fragment length polymorphism analysis. Spatial scales from centimeters to kilometers were examined, while temporal variation was assayed over the course of 1995 to 1996. Sorenson's indices (pairwise similarity values) were calculated to permit comparison between samples. The similarities of benthic denitrifiers ranged from 0.80 to 0.85 for centimeter scale comparisons, from 0.52 to 0.79 for meter level comparisons, and from 0.23 to 0.53 for kilometer scale comparisons. Sorenson's indices for temporal comparisons varied from 0.12 to 0.74. A cluster analysis of the similarity values indicated that the composition of the denitrifier assemblages varied most significantly at the kilometer scale and between seasons at individual stations. Specific nosZ genes were identified which varied at centimeter, meter, or kilometer scales and may be associated with variability in meio- or macrofaunal abundance (centimeter scale), bottom topography (meter scale), or sediment characteristics (kilometer scale).  相似文献   

3.
The efficacy of the LSU rDNA PCR primers FLR3 and FLR4 for discrimination of arbuscular mycorrhizal fungi communities via T-RFLP analysis was examined. Analysis of both public database and site-specific derived DNA sequences suggesting LSU rDNA-based T-RFLP analysis represents a valuable alternative for analysis of AMF communities.  相似文献   

4.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

5.
New primer-enzyme combinations for terminal restriction fragment length polymorphism (T-RFLP) targeting of the 16S rRNA gene were constructed by using the T-RFLP analysis program (designated TAP T-RFLP) located at the Ribosomal Database Project website, and their performance was examined empirically. By using the fluorescently labeled 516f primer (Escherichia coli positions 516 to 532) and 1510r primer (positions 1510 to 1492), the 16S rRNA gene was amplified from human fecal DNA. The resulting amplified product was digested with RsaI plus BfaI or with BslI. When the T-RFLP was carried out with fecal DNAs from eight individuals, eight predominant operational taxonomic units (OTUs) were detected with RsaI and BfaI digestion and 14 predominant OTUs were detected with BslI digestion. The distribution of the OTUs was consistent with the results of the computer simulations with TAP T-RFLP. The T-RFLP analyses of the fecal DNAs from individuals gave characteristic profiles, while the variability of the T-RFLP profiles between duplicate DNA preparations from the same samples were minimal. This new T-RFLP method made it easy to predict what kind of intestinal bacterial group corresponded to each OTU on the basis of the terminal restriction fragment length compared with the conventional T-RFLP and, moreover, made it possible to identify the bacterial species that an OTU represents by cloning and sequencing.  相似文献   

6.
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a common technique used to characterize soil microbial diversity. The fidelity of this technique in accurately reporting diversity has not been thoroughly evaluated. Here we determine if rare fungal species can be reliably detected by T-RFLP analysis. Spores from three arbuscular mycorrhizal fungal species were each mixed at a range of concentrations (1%, 10%, 50%, and 100%) with Glomus irregulare to establish a minimum detection threshold. T-RFLP analysis was capable of detecting diagnostic peaks of rare taxa at concentrations as low as 1%. The relative proportion of the target taxa in the sample and DNA concentration influenced peak detection reliability. However, low concentrations produced small, inconsistent electropherogram peaks contributing to difficulty in differentiating true peaks from signal noise. The results of this experiment suggest T-RFLP is a reproducible and high fidelity procedure, which requires careful data interpretation in order to accurately characterize sample diversity.  相似文献   

7.
Residual activity of polymerase chain reaction DNA polymerases in restriction analyses strongly affected genetic profiling based on terminal restriction fragment length polymorphisms. Artificial fragment sizes produced as a result of 5'-overhang restriction site fill-in and addition of a terminal A may bias genetic profiling and genotyping of microbial communities. Efficient removal of polymerases retained original fragment sizes and significantly reduced this profiling bias in soil bacterial communities.  相似文献   

8.
Terminal restriction fragment length polymorphism (T-RFLP) is a culture-independent method of obtaining a genetic fingerprint of the composition of a microbial community. Comparisons of the utility of different methods of (i) including peaks, (ii) computing the difference (or distance) between profiles, and (iii) performing statistical analysis were made by using replicated profiles of eubacterial communities. These samples included soil collected from three regions of the United States, soil fractions derived from three agronomic field treatments, soil samples taken from within one meter of each other in an alfalfa field, and replicate laboratory bioreactors. Cluster analysis by Ward's method and by the unweighted-pair group method using arithmetic averages (UPGMA) were compared. Ward's method was more effective at differentiating major groups within sets of profiles; UPGMA had a slightly reduced error rate in clustering of replicate profiles and was more sensitive to outliers. Most replicate profiles were clustered together when relative peak height or Hellinger-transformed peak height was used, in contrast to raw peak height. Redundancy analysis was more effective than cluster analysis at detecting differences between similar samples. Redundancy analysis using Hellinger distance was more sensitive than that using Euclidean distance between relative peak height profiles. Analysis of Jaccard distance between profiles, which considers only the presence or absence of a terminal restriction fragment, was the most sensitive in redundancy analysis, and was equally sensitive in cluster analysis, if all profiles had cumulative peak heights greater than 10,000 fluorescence units. It is concluded that T-RFLP is a sensitive method of differentiating between microbial communities when the optimal statistical method is used for the situation at hand. It is recommended that hypothesis testing be performed by redundancy analysis of Hellinger-transformed data and that exploratory data analysis be performed by cluster analysis using Ward's method to find natural groups or by UPGMA to identify potential outliers. Analyses can also be based on Jaccard distance if all profiles have cumulative peak heights greater than 10,000 fluorescence units.  相似文献   

9.
The disparity of secondary metabolites in Penicillium chrysogenum between two scales of penicillin G fermentation (50 L as pilot process and 150,000 L as industrial one) was investigated by ion-pair reversed-phase liquid chromatography tandemed with hybrid quadrupole time-of-flight mass spectrometry. In industrial process, the pools of intracellular L-α-aminoadipyl-L-cysteinyl-D-valine (LLD-ACV) and isopenicillin N (IPN) were remarkably less than that in the pilot one, which indicated that the productivity of penicillin G might be higher in the large scale of fermentation. This conclusion was supported by the higher intracellular penicillin G concentration as well as its higher yield per unit biomass in industrial cultivation. The different changing tendencies of IPN, 6-aminopenicillanic acid and 6-oxopiperide-2-carboxylic acid between two processes also suggested the same conclusion. The higher content of intracellular LLD-ACV in pilot process lead to a similarly higher concentration of bis-δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine, which had an inhibitory effect on ACV synthetase and also subdued the activity of IPN synthetase. The interconversion of secondary metabolites and the influence they put on enzymes would intensify the discrepancy between two fermentations more largely. These findings provided new insight into the changes and regulation of secondary metabolites in P. chrysogenum under different fermentation sizes.  相似文献   

10.
11.
AIMS: The suitability of genetic fingerprinting to study the microbiological basis of anaerobic bioreactor failure is investigated. METHODS AND RESULTS: Two laboratory-scale anaerobic expanded granular sludge bed bioreactors, R1 and R2, were used for the mesophilic (37 degrees C) treatment of high-strength [10 g chemical oxygen demand (COD) l(-1)] synthetic industrial-like wastewater over a 100-day trial period. A successful start up was achieved by both bioreactors with COD removal over 90%. Both reactors were operated under identical parameters; however, increased organic loading during the trial induced a reduction in the COD removal of R1, while R2 maintained satisfactory performance (COD removal >90%) throughout the experiment. Specific methanogenic activity measurements of biomass from both reactors indicated that the main route of methane production was hydrogenotrophic methanogenesis. Terminal restriction fragment length polymorphism (TRFLP) analysis was applied to the characterization of microbial community dynamics within the system during the trial. The principal differences between the two consortia analysed included an increased abundance of Thiovulum- and Methanococcus-like organisms and uncultured Crenarchaeota in R1. CONCLUSIONS: The results indicated that there was a microbiological basis for the deviation, in terms of operational performance, of R1 and R2. SIGNIFICANCE AND IMPACT OF THE STUDY: High-throughput fingerprinting techniques, such as TRFLP, have been demonstrated as practically relevant for biomonitoring of anaerobic reactor communities.  相似文献   

12.
TRFMA provides a Web environment for analyzing T-RFLP results based on molecular weights of the fragments, rather than the numbers of nucleotides, to increase accuracy. The 16S rRNA data are saved as an XML file containing around 650 sequences (light version) and a MySQL database containing around 50 000 sequences (full version), which are connected to Web server via PHP5 and manipulated on an Internet browser. AVAILABILITY: TRFMA is freely available at http://myamagu.dent.kyushu-u.ac.jp/bioinformatics/trfma/index.html and can be downloaded from the same site.  相似文献   

13.
14.
Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.  相似文献   

15.
This paper describes a method for isolation of DNA from blood samples involving a rapid chemical disintegration of proteins with 8 M urea and with a minimum of exposure to phenol. The DNA is further desalted and purified on Sephadex G-25 prepacked disposable columns. DNA isolated in this way was pure enough to be immediately cleaved by restriction enzymes.  相似文献   

16.
Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7?% of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4?% of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.  相似文献   

17.
Terminal Restriction Fragment Length Polymorphism (T-RFLP) or Fluorescent Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (FluRFLP) have made a significant impact on the way in which PCR products amplified from mixed community DNA extracts have been assessed. Technically, these approaches are essentially the same. PCR products are generated that contain at one 5′ end label, typically a fluorescent moiety, that will be detected by a DNA sequencing machine. Upon digestion using a specific restriction endonuclease, labeled and unlabeled fragments are generated. This restriction endonuclease is chosen such that following this digestion, each labeled fragment corresponds to a different sequence variant. During electrophoretic separation, the DNA sequencing machine detects only these labeled fragments and therefore detects only the sequence variants. The aim of this article is to describe the protocois and demonstrate that this profiling can be performed using different DNA sequencing machines. The analysis and applications of this approach are also discussed.  相似文献   

18.
The distribution of bacterial communities terminal restriction fragment length polymorphism (T-RFLP) fingerprint patterns was evaluated at three proximal hydrocarbon-contaminated sites located within the harbour of Messina. In order to analyse the short-term variability of the individual terminal restriction fragment (T-RF) patterns, water samples were collected at the three sites on three occasions within 3 months (T(0), T(90) and T(91)). Four sample sizes, from 50 to 1000 ml for each collected sample, were analysed separately (36 total analysed samples) to evaluate the relationship between the sample size and the bacterial diversity estimates. The dominant T-RF groups mostly belonged to signatures of putative hydrocarbon-degrading bacteria, as revealed by the virtual analysis of the obtained bands. In order to test whether significant differences were occurring between the analysed samples, the Kruskal-Wallis non-parametric test was applied to the T-RF data set. Neither significant influence of the sample size nor short spatial variability within the three sampled sites was detected for each sampling time. On the contrary, significant temporal changes in the diversity of the bacterial communities were observed. These results were confirmed by the non-metric multidimensional scales (nMDS) analysis of the whole set of samples, which indicated three main groups corresponding to the three different sampling times. In summary, the T-RFLP technique, although a polymerase chain reaction-based method, proved to be a suitable technique for monitoring polluted marine environments, typically characterized by low diversity and high relative abundances of a few dominant groups.  相似文献   

19.
Terminal restriction fragment length polymorphism (tRFLP) is a potentially high-throughput method for the analysis of complex microbial communities. Comparison of multiple tRFLP profiles to identify shared and unique components of microbial communities however, is done manually, which is both time consuming and error prone. This paper describes a freely accessible web-based program, T-Align (http://inismor.ucd.ie/~talign/), which addresses this problem. Initially replicate profiles are compared and used to generate a single consensus profile containing only terminal restriction fragments that occur in all replicate profiles. Subsequently consensus profiles representing different communities are compared to produce a list showing whether a terminal restriction fragment (TRF) is present in a particular sample and its relative fluorescence intensity. The use of T-Align thus allows rapid comparison of numerous tRFLP profiles. T-Align is demonstrated by alignment of tRFLP profiles generated from bacterioplankton communities collected from the Irish and Celtic Seas in November 2000. Ubiquitous TRFs and site-specific TRFs were identified using T-Align.  相似文献   

20.
Summary Direct gene analysis of the haptoglobin gene region was carried out by Southern blotting using an Hp cDNA as probe. Two types of polymorphism were observed: one due to intragenic duplication, is characterized by a constant fragment length difference of 1700bp observed with several enzymes and by complete correspondence with the protein molecular weight polymorphism; the second type, due to point mutation, was represented by two additional restriction sites for Eco RI and Pst I, with a frequency comparable to that of other genes. These two mutations segregated together in families, suggesting that the recently described Hp related gene is closely linked to the Hp gene. Moreover, they were completely associated with each other. The evolutionary significance of this finding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号