首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasoactive intestinal peptide (VIP) has been shown to increase the survival of developing neurons grown in dissociated spinal cord cultures. This result was evident when synaptic activity was blocked with tetrodotoxin (TTX) during a critical period of development (days 7-21 after plating). Other neuropeptides, with a close sequence homology to VIP, have now been tested for their effects on neuronal survival in culture. Within the critical period, the survival of spinal cord neurons was significantly decreased (30-35%) after incubation with 1 nM peptide histidyl-isoleucine amide (PHI-27) or 0.1 nM growth hormone releasing factor (GRF). Neuronal cell death produced by these peptides did not exceed that observed from tetrodotoxin treatment alone. Secretin had no detectable effect on neuronal survival at any of the concentrations tested. In tetrodotoxin-treated cultures, PHI-27 and GRF prevented the neuronal cell death produced by TTX, but only at concentrations greater than 0.1 microM. In contrast, VIP significantly increased neuronal survival at concentrations less than 0.01 nM. The presence of 0.1 nM PHI-27 significantly decreased the effectiveness of VIP in preventing TTX-mediated neuronal cell death. Addition of PHI-27 or VIP, with or without TTX, to one month-old cultures produced no significant change in the number of neurons compared to control cultures. These studies indicate that the survival-promoting effect of VIP is highly structure-dependent and that this action appears to be confined to a critical period of development.  相似文献   

2.
3.
Interleukin-1beta is a proinflammatory cytokine implicated under pathological conditions involving NMDA receptor activation, including the AIDS dementia complex (HAD). No information is available on the molecular mechanisms recruited by native interleukin-1beta produced under this type of condition. Using a sandwich co-culture of primary hippocampal neurons and glia, we investigated whether native interleukin-1beta released by HIV-gp120-activated glia (i) affects NMDAR functions and (ii) the relevance on neuronal spine density and survival, two specific traits of HAD. Increased phosphorylation of NR2B Tyr-1472 was observed after 24 h of exposure of neurons to 600 pm gp120. This effect occurred only when neurons were treated in the presence of glial cells and was abolished by the interleukin-1 receptor antagonist (IL-1ra). Gp120-induced phosphorylation of NR2B resulted in a sustained elevation of intracellular Ca(2+) in neurons and in a significant increase of NR2B binding to PSD95. Increased intracellular Ca(2+) was prevented by 10 mum ifenprodil, that selectively inhibits receptors containing the NR2B, by interleukin-1ra and by Ca-pYEEIE, a Src family SH2 inhibitor peptide. These last two inhibitors, prevented also NR2B binding to PSD95. Finally, gp120 reduced by 35% of the total PSD95 positive spine density after 48 h of treatment and induced by 30% of the neuronal death. Again, both of these effects were blocked by Ca-pYEEIE. Altogether, our data show that gp120 releasing interleukin-1beta from glia increases tyrosine phosphorylation of NMDAR. Thus, tyrosine phosphorylation may contribute to the sensitization of the receptor increasing its function and synaptic localization. Both of these effects are relevant for neurodegeneration.  相似文献   

4.
The effect of tumor necrosis factor-alpha (TNF-alpha) on neuronal viability has been investigated in the SK-N-BE neuroblastoma cell line. These cells undergo differentiation upon chronic treatment with retinoic acid. Exposure of SK-N-BE cells to TNF-alpha produced a proliferative response in undifferentiated cells, whereas a reduced cell number was observed in retinoic acid (RA)-differentiated cultures. This biphasic response may be related to the different expression of TNF-alpha receptors (TNFRs); a significant increase in the density of TNFR1 was in fact observed following RA-induced differentiation. Under these conditions, a pronounced increase in the formation of ceramide-1-phosphate (which was prevented by the selective inhibitor of phosphatidylcholine-specific phospholipase C, D609) and an activation of caspase-3 upon TNF-alpha challenge were evident. Selective blockade of each TNFR subtype allowed a more detailed analysis of the effect observed. Preincubation with an anti-TNFR1 antibody prevented the cytotoxic effect of TNF-alpha in RA-differentiated SK-N-BE cells, whereas the anti-TNFR2 antibody blocked the proliferative activity of the cytokine in undifferentiated cultures.  相似文献   

5.
The presence of small amounts of endotoxins are often undesirable when investigating cytokines such as interleukin-1 and tumor necrosis factor alpha. Polymyxin B, widely used to block endotoxins, does not block several forms of endotoxins, and at high concentrations, polymyxin B itself stimulates interleukin-1 production. Human peripheral blood mononuclear cells are highly sensitive to endotoxins; they respond with cytokine production to endotoxins at concentrations of 10-50 pg/ml and detect pyrogenic materials nonreactive in the Limulus test. In the present study, ultrafiltration using polysulfone filters was found to remove all interleukin-1- and tumor necrosis factor alpha-inducing substances produced in E. coli cultures. Interleukin-1- and tumor necrosis factor alpha-inducing substances derived from Pseudomonas aeruginosa cultures were also rejected by the filters. Ultrafiltration is therefore a convenient and effective procedure to remove interleukin-1 and tumor necrosis factor alpha-inducing substances from parenteral fluids and solutions that come in contact with blood such as fluids used in hemodialysis. This technique is also applicable for the large-scale production of culture media for mammalian cell expression of recombinant, pyrogen-free proteins intended for use in humans.  相似文献   

6.
In this work we have focused on the ability of interleukin-1 to induce an acute phase protein response and a degranulation of polymorphonuclear leukocytes in vivo. The capacity of the interleukin-1 receptor antagonist to influence these events was also investigated. It was shown that interleukin-1 induced an acute phase protein response in rats and mice. In rats alpha(2)-macroglubolin levels were increased in plasma after an interleukin-1 injection whereas alpha(1)-inhibitor-3 decreased in plasma. In the mice plasma amyloid P was increased. The interleukin-1 receptor antagonist blocked the increase of alpha(2)-macroglobulin and plasma amyloid P in a dose dependent way while the effect on the alpha(1)-inhibitor-3 decrease was less pronounced. Interleukin-1 led to polymorphonuclear leukocyte degranulation in vivo as measured by increased cathepsin G plasma levels. The interleukin-1 receptor antagonist could influence the early phase of this degranulation.  相似文献   

7.
N Forgione  V Tropepe 《PloS one》2012,7(7):e41033
Histone deacetylase (HDAC) proteins have a role in promoting neuronal survival in vitro, but the mechanism underlying this function has not been identified. Here we provide evidence that components of the neuronal microenvironment, including non-neuronal cells and defined culture media, can mitigate midbrain neuronal cell death induced by HDAC inhibitor treatment. Using microarrays we further identified gene expression changes taking place in non-neuronal cells as a result of HDAC inhibition. This analysis demonstrated that HDAC inhibitor treatment results in the down-regulation of immunity related signaling factors, in particular the Toll-like receptors (TLR). TLR signaling is active in cultured midbrain cells, yet blocking TLR receptors is not sufficient to cause neuronal cell death. In contrast, selective activation of this pathway using TLR ligands can modestly block the effects of HDAC inhibition. Furthermore, we observed that the negative effects of HDAC inhibitor treatment on neuronal survival could be more substantially blocked by the cytokine Interleukin-6 (IL-6), which is a major downstream target of TLR signaling. These data suggest that HDACs function to promote neuronal survival by activating a TLR and IL-6 dependent pathway.  相似文献   

8.
《Life sciences》1993,52(23):1883-1890
In primary rat cortical glial cell cultures lipopolysaccharide (LPS) induced a dose- and time-dependent increase of intracellular cyclic GMP concentration associated with a release of nitrite. The LPS-induced cyclic GMP and nitrite increase was enhanced by interferon-γ and was prevented by L-NG- nitroarginine, dexamethasone and cycloheximide. Thus indicates that LPS effect occured via the production of nitric oxide (NO) and involved new protein synthesis suggesting the induction of NO syntahse in these cells. Furthermore this induction was Ca2+-independent and was blocked by an inhibitor of the synthesis of tetrahydrobiopterin. The inducible NO synthase was also expressed by C6 glioma cells. In primary mixed cultures containing both neuronal and glial cells, the effects of LPS were less important than in primary glial cell cultures suggesting that glial cells rather than neurons expressed the inducible form of NO synthase. On the other hand no change on neuronal viability was observed after NO synthase induction by LPS in this culture type. This study indicates that glial cells are able to induce NO synthase without affecting neuronal survival.  相似文献   

9.
《Life sciences》1996,59(14):PL227-PL234
Effect of NO induced by interleukin-1 (IL-1) or IL-1/interferon-γ (IL-1/IFN-γ) was investigated on cell growth using primary cultures of human thyrocytes. Cytokine-induced NO production was associated not only with an increase in cyclic GMP (cGMP) formation but also with an inhibition of cell growth determined by bromo-deoxyuridine (Br-dU) incorporation into DNA. When NO synthesis was blocked by NG-monomethyl-L-arginine (L-MMA), cGMP formation was prevented in parallel with NO production and inversely a restoration of cell growth was evident. S-nitroso-N-acetyl-penicillamine, a NO donor, but not a cell permeable cGMP analog, 8-bromo-cGMP, inhibited cell growth in a dose-dependent manner. The present findings strongly indicate that endogenous NO produced by the cytokine treatment as well as exogenous NO, has a cGMP-independent inhibitory action on human thyrocyte growth.  相似文献   

10.
Stimulation of nicotinic acetylcholine receptors protects motor neurons   总被引:3,自引:0,他引:3  
The present study demonstrated that administration of nicotine prevented glutamate-induced motor neuronal death in primary cultures of the rat spinal cord. The nicotine-induced neuroprotection was inhibited by either dihydro-beta-erythroidin (DHbetaE) or alpha-bungarotoxin (alphaBT), suggesting that it is mediated through both alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs). Both alpha4beta2 and alpha7 nAChRs were identified on rat spinal motor neurons by immunohistochemical methods. We also demonstrated that galantamine, an acetylcholinesterase inhibitor with allosteric nAChR-potentiating ligand properties, prevented glutamate-induced motor neuronal death. These results suggest that stimulation of nAChR may be used as a treatment for ALS.  相似文献   

11.
Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide   总被引:10,自引:0,他引:10  
The developmental regulation of neuronal survival by vasoactive intestinal peptide (VIP) was investigated in dissociated spinal cord-dorsal root ganglion (SC-DRG) cultures. Previous studies demonstrated that VIP increased neuronal survival in SC-DRG cultures when synaptic transmission was blocked with tetrodotoxin (TTX). This effect was further investigated to determine if VIP acted directly on neurons or via nonneuronal cells. For these studies, SC-DRG cells were cultured under conditions designed to provide preparations enriched for a particular cell type: astrocyte-enriched background cell (BG) cultures, meningeal fibroblast cultures, standard mixed neuron-nonneuron (STD) cultures, and neuron-enriched (N) cultures. Addition of 0.1 nM VIP to TTX-treated STD cultures for 5 d prevented the TTX-mediated death and the death that occurred naturally during development in culture, whereas the same treatment on N cultures did not prevent neuronal cell death. Conditioned medium from VIP-stimulated BG cultures prevented neuronal cell death when added to the medium (10% of total volume) of N cultures treated with TTX. The same amount of conditioned medium from BG cultures that were not treated with VIP had no protective action on N cultures. Conditioned medium from N or meningeal fibroblast cultures, either with or without VIP treatment, did not prevent TTX-mediated cell death in N test cultures. These data indicate that VIP increases the availability of neurotrophic survival-promoting substances derived from nonneuronal cultures, the most likely source being astroglial cells. This study suggests that VIP has a role in mediating a neuron-glia-neuron interaction that influences the trophic regulation of neuronal survival.  相似文献   

12.
In this work the authors studied the effects of interleukin-1 alpha on metabolic activities of human osteoblast-like cells in vitro. The bone nature of the cells was established by assaying for specific bone protein, the osteonectin, and the parathormone receptor, an osteoblast marker. Administration of interleukin-1 alpha to cultured osteoblasts produce an increase in cellular proliferation as suggested by 3H-thymidine incorporation and cell growth studies. Interleukin-1 alpha also affected collagen synthesis confirming its potential role on bone-formation and resorption processes.  相似文献   

13.
Development and regulation of substance P in sensory neurons in vitro   总被引:4,自引:0,他引:4  
Substance P (SP), the putative neuropeptide mediator of pain sensation, is contained in small dorsomedial sensory neurons of the dorsal root ganglion. Using different culture techniques and a sensitive radioimmunoassay for SP, we studied the ontogeny and regulation of this functionally important neurotransmitter in these neurons, obtained from neonatal rats. In ganglion explants grown by two different techniques, SP increased two- to threefold during the first week in culture. This rise was predominantly due to mechanisms intrinsic to the ganglion since it occurred in a fully defined medium, in the absence of added nerve growth factor (NGF). Blockade of protein synthesis with cycloheximide prevented the increase in SP suggesting that ongoing protein synthesis was necessary. Furthermore, depolarization with veratridine blocked the increase in SP, an effect which was reversed by tetrodotoxin, suggesting that transmitter characteristics in sensory neurons may be regulated by depolarization and/or transmembrane sodium flux. After a week in culture on a collagen substratum, supplementary NGF was necessary for the continued rise in SP. However, raising the dose of the trophic factor had no incremental effect on SP content, suggesting that NGF was acting primarily on neuronal survival. To approach such questions at the cellular level, ganglia were dissociated and grown in cell culture. In all cultures, SP increased 1.5-fold during the first day. In the absence of NGF, however, SP and cell numbers fell progressively after the second day. NGF elicited parallel increases in cell survival and SP content, supporting the suggestion that NGF acts primarily through neuronal survival to increase SP. Veratridine blocked the increase in SP in a tetrodotoxin-reversible manner, without affecting neuronal survival, indicating that the effects of these agents do not depend on normal ganglionic cellular architecture. Consequently, depolarization probably affects ganglionic sensory neurons directly. Our studies suggest that the development of transmitter characteristics in primary sensory neurons may be regulated by multiple factors, including neuronal activity as well as trophic agents such as NGF.  相似文献   

14.
Sympathetic neurons undergo programmed cell death (PCD) upon deprivation of nerve growth factor (NGF). PCD of neurons is blocked by inhibitors of the interleukin-1beta converting enzyme (ICE)/Ced-3-like cysteine protease, indicating involvement of this class of proteases in the cell death programme. Here we demonstrate that the proteolytic activities of the proteasome are also essential in PCD of neurons. Nanomolar concentrations of several proteasome inhibitors, including the highly selective inhibitor lactacystin, not only prolonged survival of NGF-deprived neurons but also prevented processing of poly(ADP-ribose) polymerase which is known to be cleaved by an ICE/Ced-3 family member during PCD. These results demonstrate that the proteasome is a key regulator of neuronal PCD and that, within this process, it is involved upstream of proteases of the ICE/Ced-3 family. This order of events was confirmed in macrophages where lactacystin inhibited the proteolytic activation of precursor ICE and the subsequent generation of active interleukin-1beta.  相似文献   

15.
This study showed that the adherence of human polymorphonuclear leukocytes (PMN) to monolayer cultures of human umbilical vein endothelial cells (HUVEC) was increased when the latter were rendered anoxic. This adhesion was greater after 4-5 h than after 8 h of anoxia, but even at 8 h was significantly above the level of adhesion to HUVEC maintained under normoxic conditions for the same period. The changes in adhesion were not dependent on the viability of HUVEC during anoxia. Anoxia-induced adhesion was prevented by addition of cycloheximide (5 micrograms/ml) to the cultures, suggesting that it depended on HUVEC protein synthesis. Enhanced adhesion was also prevented by addition of a monoclonal antibody directed against the cytokine, interleukin-1 alpha (IL-1 alpha). These findings are consistent with a role of endogenous IL-1 alpha as a mediator of the anoxia-induced adhesion of PMN to HUVEC.  相似文献   

16.
The c-Jun N-terminal kinase signaling cascade appears to play a role in some cases of cell death, including neuronal apoptosis. CEP-1347 (KT7515), an indolocarbazole of the K252a family, blocks this stress signaling cascade and promotes survival. Here, we used CEP-1347 to probe whether neuronal death pathways activated by distinct insults also possess elements in common. Cultured rat sympathetic neurons and neuronally differentiated PC12 cells were induced to die by withdrawal of nerve growth factor, exposure to ultraviolet irradiation, or subjection to oxidative stress. In each case, death was prevented by 100-200 nM CEP-1347. Moreover, in each of these death paradigms, c-Jun N-terminal kinase 1 activity in neuronally differentiated PC12 cells was elevated by two- or threefold, and this increase was totally blocked by CEP-1347 at concentrations that promoted survival. In contrast, 200 nM CEP-1347 did not block death due to serum withdrawal from undifferentiated PC12 cells or to activation of Fas in Jurkat T cell cultures, even though in each case c-Jun N-terminal kinase 1 activation occurred and was inhibited by CEP-1347. These observations suggest that some but not all death pathways triggered by different insults can include a common mechanistic component, a likely candidate for which is activation of the c-Jun N-terminal kinase signaling cascade.  相似文献   

17.
Isolated uteri from rats fed with a normal diet convert [14C]arachidonate into eicosanoids: PGE(2), PGF(2alpha), TXB(2) and 6-keto-F(1alpha). Restricted diet (50% of the normal diet, during 25 days) diminishes the levels of PGE(2), PGF(2alpha) and TXB(2). The addition of Interleukin-1alpha to the Krebs-Ringer bicarbonate medium increases sharply the production of eicosanoids. Inhibitors of nitric oxide synthase, Nomega-nitro-L-arginine methyl ester or aminoguanidine, do not prevent eicosanoids increase. Conversely, NS-398 (a selective inhibitor of COX-2) blocks the increase of eicosanoids while PGE(2) blocks eicosanoids production mediated by IL-1alpha. Other experiments with uteri of underfed rats confirm that interleukin-1alpha produces an increase in the glucose metabolism. The addition of Nomega-nitro-L-arginine methyl ester, aminoguadinine or NS-398 blocked such stimulation. It is concluded that Interleukin-1alpha produces an increase of glucose metabolism in uteri isolated from underfed rats by two different mechanisms, both involving COX-2: (1) nitric oxide independent and (2) nitric oxide dependent.  相似文献   

18.
There is evidence that an inflammatory microglial reaction participates in the pathophysiology of dopaminergic neuronal death in Parkinson's disease and in animal models of the disease. However, this phenomenon remains incompletely characterized. Using an in vitro model of neuronal/glial mesencephalic cultures, we show that the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) stimulates the proliferation of microglial cells at concentrations that selectively reduce the survival of DA neurones. The mitogenic action of MPP+ was not the mere consequence of neuronal cell demise as the toxin produced the same effect in a model system of neuronal/glial cortical cultures, where target DA neurones are absent. Consistent with this observation, the proliferative effect of MPP+ was also detectable in neurone-free microglial/astroglial cultures. It disappeared, however, when MPP+ was added to pure microglial cell cultures suggesting that astrocytes played a key role in the mitogenic mechanism. Accordingly, the proliferation of microglial cells in response to MPP+ treatment was mimicked by granulocyte macrophage colony-stimulating factor (GM-CSF), a proinflammatory cytokine produced by astrocytes and was blocked by a neutralizing antibody to GM-CSF. Thus, we conclude that the microglial reaction observed following MPP+ exposure depends on astrocytic factors, e.g. GM-CSF, a finding that may have therapeutic implications.  相似文献   

19.
The regulation of the three major acute-phase proteins alpha 2-macroglobulin, cysteine proteinase inhibitor and alpha 1-antitrypsin by recombinant human interleukin-1 beta, recombinant human interleukin-6 and recombinant human tumor necrosis factor alpha was studied in rat hepatocyte primary cultures. Synthesis and secretion of the acute-phase proteins was measured after labeling with [35S]methionine and immunoprecipitation. Incubation of hepatocytes with interleukin-6 led to dose-dependent and time-dependent changes in the synthesis of the three major acute-phase proteins and albumin, similar to those occurring in vivo during experimental inflammation. alpha 2-Macroglobulin and cysteine proteinase inhibitor synthesis was induced 54-fold and 8-fold, respectively, 24 h after the addition of 100 units/ml interleukin-6. At the same time synthesis of the negative acute-phase protein albumin was reduced to 30% of controls. Half-maximal effects were achieved with 4 units interleukin-6/ml. Interleukin-1 beta had only a partial effect on the regulation of the four patients studied: only a twofold stimulation of alpha 2-macroglobulin and a 60% reduction of albumin synthesis were observed. Tumor necrosis factor alpha did not alter the synthesis of acute-phase proteins. The stimulation of alpha 2-macroglobulin and cysteine proteinase inhibitor synthesis by interleukin-6 was inhibited by interleukin-1 beta in a dose-dependent manner. In pulse-chase experiments the effect of interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha on the secretion of acute-phase proteins was examined. Interleukin-6 markedly accelerated the secretion of total proteins and alpha 2-macroglobulin, whereas the secretion of cysteine proteinase inhibitor, alpha 1-antitrypsin and albumin was not affected. The inhibition of N-glycosylation by tunicamycin abolished the effect of interleukin-6 on the secretion of alpha 2-macroglobulin, indicating a possible role of interleukin-6 on N-glycosylation.  相似文献   

20.
We have extended our previous findings and shown that human immunodeficiency virus Tat protein, in addition to nitric oxide (NO), stimulated rat microglial cultures to release pro-inflammatory cytokine interleukin-1beta and tumour necrosis factor-alpha in a nuclear factor (NF)-kappaB-dependent manner. At the same time, Tat stimulated the accumulation of free radicals, as indicated by the increased levels of isoprostane 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)), a reliable marker of lipid peroxidation and oxidative stress, by a mechanism unrelated to NF-kappaB activation. The presence of free radical scavengers abrogated Tat-induced 8-epi-PGF(2alpha) accumulation without affecting NO and cytokine production. Consistently, Tat-induced IkappaBalpha degradation - an index of NF-kappaB activation - was not affected by free radical scavengers, but was prevented by an NF-kappaB-specific inhibitor. Our observations indicate that NF-kappaB plays a key role in Tat-dependent microglial activation, and that oxidative stress and NF-kappaB activation induced by Tat occur by independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号