首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The rapid decay of luminescence in extracts of the ostracod crustacean Cypridina hilgendorfii, has been studied by means of a photoelectric-amplifier-string galvanometer recording system. 2. For rapid flashes of luminescence, the decay is logarithmic if ratio of luciferin to luciferase is small; logarithmic plus an initial flash, if ratio of luciferin to luciferase is greater than five. The logarithmic plot of luminescence intensity against time is concave to time axis if ratio of luciferin to luciferase is very large. 3. The velocity constant of rapid flashes of luminescence is approximately proportional to enzyme concentration, is independent of luciferin concentration, and varies approximately inversely as the square root of the total luciferin (luciferin + oxyluciferin) concentration. For large total luciferin concentrations, the velocity constant is almost independent of the total luciferin. 4. The variation of velocity constant with total luciferin concentration (luciferin + oxyluciferin) and its independence of luciferin concentration is explained by assuming that light intensity is a measure of the luciferin molecules which become activated to oxidize (accompanied with luminescence) by adsorption on luciferase. The adsorption equilibrium is the same for luciferin and oxyluciferin and determines the velocity constant.  相似文献   

2.
In order to improve calibration of firefly luciferase signals obtained by injecting the enzyme into single, isolated heart and liver cells we have investigated why the luminescence from cells is greatly depressed compared with in vitro (in mammalian ionic milieu) and why the decay of the intracellular signal is remarkably slow. We have shown that inorganic pyrophosphate greatly depresses the signal in vitro and that micromolar concentrations of inoragnic pyrophosphate, comparable with that in cytoplasm, reverse this inhibition and stabilize the signal, eliminating its decay. Higher concentrations of pyrophosphate depress the signal by inhibiting ATP-binding to luciferase. Luciferse-injected cells exposed to extracellular luciferin concentrations above about 100 μmol/1 (corresponding to a cytoplasmic level of c. 5–10 μmol/1 because of a transplasmalemmal gradient) show a gradual, irreversible loss of signal. We attribute this phenomenon (which is not seen in vitro) to the gradual accumlation of a luminescently inactive, irreversible, luciferase-oxyluciferin complex. At low luciferin levels this complex is prevented from forming by cytoplasmic pyrophosphate. Above c. 100μmol/1 extracellular luciferin, the pyrophosphate level in the cytoplasm fails to fully prevent the complex forming. In vitro this phenomenon does not occur because the luciferase concentrations and hence oxyluciferin levels are orders of magnitude lower than in cells injected with concentrated luciferase solutions, which have a cytoplasmic luciferase concentration of approximately 2-4 μmol/1.  相似文献   

3.
The results of the author's laboratory on the interaction of Luciola mingrelica firefly luciferase with substrates and their analogs using both steady-state and time resolved fluorescence are reviewed. The contribution of fluorescence of Trp and Tyr residues of the protein to its intrinsic fluorescence spectrum was estimated. Studies of quenching of Trp and Tyr fluorescence by luciferin and ATP allowed one to determine binding constants of the luciferase with substrates and to show that the binding of one substrate to the luciferase decreases the affinity of the enzyme for the other one. Fluorescence of oxyluciferin and its analogs (dimethyl- and monomethyloxyluciferins) was shown to be a good model of native firefly bioluminescence. A comparison of the fluorescence spectra of oxyluciferin and its analogs in aqueous solutions and in the presence of the luciferase revealed specific and nonspecific effects of the microenvironment on the equilibrium between different ionic forms of oxyluciferin. An approach based on photo-physical concepts of the correlation between luminescence spectra and structure of the emitter and its microenvironment was proposed and this approach was used to analyze bioluminescence spectra of wild-type and mutant luciferases.  相似文献   

4.
Horseradish peroxidase (HRP) catalyzes the oxidative chemiluminescent reaction of luminol, and firefly luciferase catalyzes the oxidation of firefly D-luciferin. Here we report a novel substrate, 5-(5'-azoluciferinyl)-2,3-dihydro-1,4-phthalazinedione (ALPDO), that can trigger the activity of HRP and firefly luciferase in solution because it contains both luminol and luciferin functionalities. It is synthesized by diazotization of luminol and its subsequent azo coupling with firefly luciferin. NMR spectral data show that the C5' of benzothiazole in luciferin connects the diazophthalahydrazide. The electronic absorption and fluorescence properties of ALPDO are different from those of its precursor molecules. The chemiluminescence emission spectra of the conjugate substrate display biphotonic emission characteristic of azophthalatedianion and oxyluciferin. It has an optimum pH of 8.0 for maximum activity with respect to HRP as well as luciferase. At pH 8.0 the bifunctional substrate has 12 times the activity of luminol but has 7 times less activity than the firefly luciferin-luciferase system. The specific enhancement of light emission from the cyclic hydrazide part of ALPDO helped in the sensitive assay of HRP down to 2.0 x 10(-13) M and of ATP to 1.0 x 10(-14) mol. Addition of enhancers such as firefly luciferin and p-iodophenol (PIP) to the HRP-ALPDO-H2O2 system enhanced the light output.  相似文献   

5.
Oxyluciferin may be reduced to luciferin at cathodes, when an electric current is passed through the solution, or at cathodes formed by metal couples in solution, or at cathodes of oxidation-reduction cells of the NaCl - Pt - Pt - Na2S type. It is also reduced at those metal surfaces (Al, Mn, Zn, and Cd) which liberate nascent hydrogen from water, although no visible hydrogen gas separates from the surface. Molecular hydrogen does not reduce oxyluciferin even though very finely divided but will reduce oxyluciferin in contact with palladium. Palladium has no reducing action except in presence of hydrogen, and apparently acts as a catalyst by virtue of some power of converting molecular into atomic hydrogen. Conditions are described under which a continuous luminescence of luciferin can be obtained. This luminescence may be used as a test for atomic hydrogen. It is suggested that the steady luminescence of bacteria is due to continuous oxidation of luciferin to oxyluciferin and reduction of oxyluciferin to luciferin in different parts of the bacterial cell.  相似文献   

6.
The oxidation-reduction potential of the Cypridina luciferin-oxyluciferin system determined by a method of "bracketing" lies somewhere between that of anthraquinone 2-6-di Na sulfonate (Eo '' at pH of 7.7 = –.22) which reduces luciferin, and quinhydrone (Eo '' at pH of 7.7 = +.24), which oxidizes luciferin. Systems having an Eo '' value between –.22 and +.24 volt neither reduce oxyluciferin nor oxidize luciferin. If the luciferin-oxyluciferin system were truly reversible considerable reduction and oxidation should occur between –.22 and +.24. The system appears to be an irreversible one, with both "apparent oxidation" and "apparent reduction potentials" in Conant''s sense. Hydrosulfites, sulfides, CrCl2, TiCl3, and nascent hydrogen reduce oxyluciferin readily in absence of oxygen but without luminescence. Luminescence only appears in water solution if luciferin is oxidized by dissolved oxygen in presence of luciferase. Rapid oxidation of luciferin by oxygen without luciferase or oxidation by K3Fe(CN)6 in presence of luciferase but without oxygen never gives luminescence.  相似文献   

7.
Bioluminescent oxidation of Cypridina luciferin yields CO2 besides oxyluciferin and light. The exchange of oxygen between the CO2 and H2O of the solvent becomes significant when less than approximately 1 μmol of luciferin is reacted in 4 ml of buffer solution, and the exchanged oxygen in CO2 markedly increases by decreasing the amount of luciferin. Such an exchange is to be expected in any such system which produces CO2 in aqueous solution, and must be taken into account in interpreting the results of experiments.  相似文献   

8.
Firefly luciferase utilizes only ATP and a few closely related nucleotides as substrates for the formation of luciferyl adenylate which is an intermediate in the bioluminescent reaction sequence that oxidizes firefly luciferin. The enzyme shows two different time courses of light production depending on ATP concentration used: a flash with high concentrations of ATP (>8μM) or a fairly constant production of light with lower concentrations of ATP (< 1 μM). Many nucleotides, nucleotide-containing substances and other compounds, when added either prior to or 1 min after the addition of ATP, change the time course of light production. When added before ATP, these compounds yield a reaction mixture in which light production is fairly constant (at the level characteristic of the flash observed with that ATP concentration). When the compounds are added after ATP addition, light production is markedly stimulated and the higher rate of light production is maintained for several minutes. There is an increase in quanta of light produced per luciferase dimer from 1 to 5/min with the addition of any of several nucleotide analogues. These results are consistent with a stimulated release of the inhibitory product oxyluciferin, allowing turnover of the enzyme. This enzyme turnover permits more light output at high ATP concentrations, thus enhancing the sensitivity of enzyme determination.  相似文献   

9.
The luciferase-product complex (E · P) was isolated from the reaction mixture after light emission had occurred. The spectral properties of the product in the E · P complex are similar to those of oxyluciferin, with a broad absorption at 385 nm. The enzyme from the complex regains full activity upon the addition of substrates. The product is not covalently bound to the enzyme and readily dissociates in the presence of 6 m urea. The isolated E · P complex was found to have 1 mol of oxyluciferin per 100,000 daltons of luciferase. No AMP could be detected in the E·P complex unless inorganic pyrophosphatase was present during the reaction. In that case 1 mol of AMP per 100,000 daltons was found.Stopped flow studies showed that an increase in 385 nm absorption occurred concomitant with light emission. Measurement of the initial rate of product formation and the rate of photon emission showed they were identical, suggesting that oxyluciferin is indeed the light-emitting product. In the initial burst of the reaction two oxyluciferin moles per 100,000 daltons of luciferase are formed. A plot of the log of the initial rate of product formation was biphasic, indicating that the first mole of product is formed at a faster rate than the second. These results are consistent with previous experiments. However, they do not resolve the question of the molecular weight of the catalytically active species.  相似文献   

10.
Interestingly, only the D-form of firefly luciferin produces light by luciferin–luciferase (L–L) reaction. Certain firefly luciferin analogues with modified structures maintain bioluminescence (BL) activity; however, all L-form luciferin analogues show no BL activity. To this date, our group has developed luciferin analogues with moderate BL activity that produce light of various wavelengths. For in vivo bioluminescence imaging, one of the important factors for detection sensitivity is tissue permeability of the number of photons emitted by L–L reaction, and the wavelengths of light in the near-infrared (NIR) range (700–900 nm) are most appropriate for the purpose. Some NIR luciferin analogues by us had performance for in vivo experiments to make it possible to detect photons from deep target tissues in mice with high sensitivity, whereas only a few of them can produce NIR light by the L–L reactions with wild-type luciferase and/or mutant luciferase. Based on the structure–activity relationships, we designed and synthesized here a luciferin analogue with the 5-allyl-6-dimethylamino-2-naphthylethenyl moiety. This analogue exhibited NIR BL emissions with wild-type luciferase (λmax = 705 nm) and mutant luciferase AlaLuc (λmax = 655 nm).  相似文献   

11.
The small Japanese "firefly squid," Watasenia scintillans, emits a bluish luminescence from dermal photogenic organs distributed along the ventral aspects of the head, mantle, funnel, arms and eyes. The brightest light is emitted by a cluster of three tiny organs located at the tip of each of the fourth pair of arms. Studies of extracts of the arm organs show that the light is due to a luciferin-luciferase reaction in which the luciferase is membrane-bound. The other components of the reaction are coelenterazine disulfate (luciferin), ATP, Mg(2+), and molecular oxygen. Based on the results, a reaction scheme is proposed which involves a rapid base/luciferase-catalyzed enolization of the keto group of the C-3 carbon of luciferin, followed by an adenylation of the enol group by ATP. The AMP serves as a recognition moiety for docking the substrate molecule to a luciferase bound to membrane, after which AMP is cleaved and a four-membered dioxetanone intermediate is formed by the addition of molecular oxygen. The intermediate then spontaneously decomposes to yield CO(2) and coelenteramide disulfate (oxyluciferin) in the excited state, which serves as the light emitter in the reaction.  相似文献   

12.
Luciferase from the anthozoan coelenterate Renilla reniformis (Renilla luciferin:oxygen 2-oxidoreductase (decarboxylating), EC 1.13.12.5.) catalyzes the bioluminescent oxidation of Renilla luciferin producing light (lambdaB 480 nm, QB 5.5%), oxyluciferin, and CO2 (Hori, K., Wampler, J.E., Matthews, J.C., and Cormier, M.J. (1973), Biochemistry 12, 4463). Using a combination of ion-exchange, molecular-sieve, sulfhydryl-exchange, and affinity chromatography, luciferase has been purified, approximately 12 000-fold with 24% recovery, to homogeneity as judged by analysis with disc and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and ultracentrifugation. Renilla luciferase is active as a nearly spherical single polypeptide chain monomer of 3.5 X 10(4) daltons having a specific activity of 1.8 X 10(15) hp s-1 mg-1 and a turnover number of 111 mumol min-1 mumol-1 of enzyme. This enzyme has a high content of aromatic and hydrophobic amino acids such that it has an epsilon280nm 0.1% of 2.1 and an average hydrophobicity of 1200 cal residue-1. The high average hydrophobicity of luciferase, which places it among the more hydrophobic proteins reported, is believed to account, at least in part, for its tendency to self-associate forming inactive dimers and higher molecular weight species.  相似文献   

13.
The small Japanese “firefly squid,” Watasenia scintillans, emits a bluish luminescence from dermal photogenic organs distributed along the ventral aspects of the head, mantle, funnel, arms and eyes. The brightest light is emitted by a cluster of three tiny organs located at the tip of each of the fourth pair of arms. Studies of extracts of the arm organs show that the light is due to a luciferin-luciferase reaction in which the luciferase is membrane-bound. The other components of the reaction are coelenterazine disulfate (luciferin), ATP, Mg2+, and molecular oxygen. Based on the results, a reaction scheme is proposed which involves a rapid base/luciferase-catalyzed enolization of the keto group of the C-3 carbon of luciferin, followed by an adenylation of the enol group by ATP. The AMP serves as a recognition moiety for docking the substrate molecule to a luciferase bound to membrane, after which AMP is cleaved and a four-membered dioxetanone intermediate is formed by the addition of molecular oxygen. The intermediate then spontaneously decomposes to yield CO2 and coelenteramide disulfate (oxyluciferin) in the excited state, which serves as the light emitter in the reaction.  相似文献   

14.
In the first of two half-reactions resulting in the emission of visible light, firefly luciferase forms luciferyl-adenylate from its natural substrates beetle luciferin and Mg-ATP. The acyl-adenylate is subsequently oxidized producing the light emitter oxyluciferin in an electronically excited state. In vitro, under mild conditions of temperature and pH, the acyl-adenylate intermediate is readily hydrolyzed and susceptible to oxidation. We report here the multi-step synthesis and physical and enzymatic characterization of an N-acyl sulfamate analog of luciferyl-adenylate, 5'-O-[(N-dehydroluciferyl)-sulfamoyl]-adenosine (compound 5). This represents the first example of a stable and potent (Ki = 340 nM) reversible inhibitor of firefly luciferase activity based on the structure of the natural acyl-adenylate intermediate. Additionally, we present the results of limited proteolysis studies that demonstrate that the binding of the novel acyl-adenylate analog protects luciferase from proteolysis. The findings presented here are interpreted in the context of the hypothesis that luciferase and the other enzymes in a large superfamily of adenylate-forming proteins adopt two conformations to catalyze two different partial reactions. We anticipate that the novel N-acyl sulfamate analog will be a valuable reagent in future studies designed to elucidate the role of conformational changes in firefly luciferase catalyzed bioluminescence.  相似文献   

15.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

16.
Firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen in a two-step process. The enzyme first catalyzes the adenylation of the carboxylate substrate luciferin with Mg-ATP followed by the oxidation of the acyl-adenylate to the light-emitting oxyluciferin product. The beetle luciferases are members of a large family of nonbioluminescent proteins that catalyze reactions of ATP with carboxylate substrates to form acyl-adenylates. Formation of the luciferase-luciferyl-AMP complex is a specific example of the chemistry common to this enzyme family. Site-directed mutants at positions Lys529, Thr343, and His245 were studied to determine the effects of the amino acid changes at these positions on the individual luciferase-catalyzed adenylation and oxidation reactions. The results suggest that Lys529 is a critical residue for effective substrate orientation and that it provides favorable polar interactions important for transition state stabilization leading to efficient adenylate production. These findings as well as those with the Thr343 and His245 mutants are interpreted in the context of the firefly luciferase X-ray structures and computational-based models of the active site.  相似文献   

17.
Inouye S 《FEBS letters》2004,577(1-2):105-110
Blue fluorescent protein from the calcium-sensitive photoprotein aequorin (BFP-aq) was prepared and determined to be a heat resistant enzyme, catalyzing the luminescent oxidation of coelenterazine (luciferin) with molecular oxygen as a general luciferase. After treatment with excess ethylenediaminetetraacetic acid to remove Ca2+ from BFP-aq, the blue fluorescence shifted to a greenish fluorescence. This greenish fluorescent protein (gFP-aq) was identified as a non-covalent complex of apoaequorin with coelenteramide (oxyluciferin) in a molar ratio of 1:1. By incubation with coelenterazine in the absence of reducing reagents, gFP-aq was converted to aequorin at 25 degrees C. BFP-aq and gFP-aq possessing both fluorescence and luminescence activities may work as novel reporter proteins.  相似文献   

18.
19.
Bioluminescence is broadly distributed in marine dinoflagellates and has been intensively studied in Lingulodinium (Gonyaulax) polyedra. In this species, bioluminescence is regulated in a circadian fashion; the enzyme (luciferase) and the luciferin (substrate)‐binding protein are synthesized and degraded on a daily basis. Synthesis of both proteins is regulated at the level of translation. The L. polyedra luciferase gene is composed of three contiguous domains that are greater than 75% identical at the nucleic acid level. Possible explanations for the high degree of sequence conservation include: (1) the domains evolved through a recent duplication event; (2) the sequence similarity is maintained by a molecular process such as gene conversion; or (3) there is a functional role associated with the primary nucleic acid sequence, such as in the translational regulation of luciferase expression. The phylogenetic relationship of dinoflagellates predicted from 18S rDNA genes provides a framework for examining the molecular evolution of the regulation of luciferase expression and of genes encoding luciferase and the luciferin‐binding protein. In particular, we are examining the evolution of the circadian rhythm of bioluminescence and of luciferase abundance, the presence/absence of the luciferin‐binding protein, and the molecular structure of the luciferase gene. We anticipate that this approach will distinguish between regions of the luciferase molecule that are conserved for enzyme function versus those concerned with the regulation of protein expression. In addition, it will provide insight into the evolution of the regulatory processes and pathways.  相似文献   

20.
To elucidate the emission process of firefly d ‐luciferin oxidation across the pH range of 7–9, we identified the emission process by comparison of the potential and free‐energy profiles for the formation of the firefly substrate and emitter, including intermediate molecules such as d ‐luciferyl adenylate, 4‐membered dioxetanone, and their deprotonated chemical species. From these relative free energies, it is observed that the oxidation pathway changes from d ‐luciferin → deprotonated d ‐luciferyl adenylate → deprotonated 4‐membered dioxetanone → oxyluciferin to deprotonated d ‐luciferin → deprotonated d ‐luciferyl adenylate → deprotonated 4‐membered dioxetanone → oxyluciferin with increasing pH value. This indicates that deprotonation on 6′OH occurs during the formation of dioxetanone at pH 7–8, whereas luciferin in the reactant has a 6′OH‐deprotonated form at pH 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号