首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repeated DNA sequences in the distal long arm of the human X chromosome   总被引:1,自引:1,他引:0  
Summary Two DNA probes from within a single large insert from a recombinant phage-DNA library that was constructed from flow-sorted chromosomes enriched for the human X chromosome were shown to hybridize with repeated X-specific and autosomal DNA sequences. The X-chromosomal repeated sequences were assigned to the distal long arm of the X chromosome by both hybrid mapping and in situ hybridization. Fine mapping places these repeats in a region of Xq28 between DX13 (DXS15, in distal Xq28) and factor VIII (F8C, in proximal Xq28). The location of the X-specific repeats makes them potentially useful for future investigations of discases mapping to the distal long arm of the X chromosome, such as the fragile X syndrome.  相似文献   

2.
Menkes syndrome is a rare X-linked recessive disorder characterized by an inability to metabolize copper. A female patient with both this disease and an X; autosome translocation with karyotype 46,X,t(X;2)(q13;q32.2) has previously been described. The translocation breakpoint in Xq13 coincides with a previous assignment of the Menkes gene at Xq13 by linkage data in humans and by analogy to the mottled mutations which are models for Menkes disease in the mouse. Therefore, this translocation probably interrupts the gene for Menkes syndrome in band Xq13. We describe here experiments to precisely map the translocation breakpoint within this chromosomal band. We have established a lymphoblastoid cell line from this patient and have used it to isolate the der(2) translocation chromosome (2pter----2q32::Xq13----Xqter) in human/hamster somatic cell hybrids. Southern blot analyses using a number of probes specific for chromosomes X and 2 have been studied to define precisely the location of the translocation breakpoint. Our results show that the breakpoint in this patient--and, therefore, likely the Menkes gene--maps to a small subregion of band Xq13.2-q13.3 proximal to the PGK1 locus and distal to all other Xq13 loci tested.  相似文献   

3.
A t(X:15)(q23;q25) was detected during cytogenetic investigation of a lymphoblastoid cell line established from a female patient with Fanconi anemia. The translocation was apparently balanced at passage 300 and unbalanced at passage 13. A chromatid exchange between both the normal and the der(15), between the centromere and band 15q25, may explain these results. Replication studies, following BrdU incorporation, indicate that the segment Xq23----qter from the der(15) is early replicating whereas segment Xpter----q23 from the der(X) is late replicating. Since the normal X was early replicating, it is concluded that the segment of the long arm of chromosome X, separated from its inactivation center by the translocation, was reactivated. This interpretation is confirmed by the methylation patterns of the hypoxanthine phosphoribosyltransferase gene (HPRT), mapped on Xq26, which corresponds to that of an active gene, whereas that of phosphoglycerate kinase (PGK1), which remained on the der(X), corresponds to that of an inactive gene. This is the first example of reactivation of a segment of the X chromosome following a structural rearrangement in somatic cells.  相似文献   

4.
Fifty-five single-copy DNA probes were isolated from the library LL06NS01, which was constructed from a complete HindIII digest of a flow-sorted human chromosome 6. Because chromosomes from a human x Chinese hamster somatic cell hybrid were used as the starting material for the flow-sorting, the library could be expected to contain some contaminating Chinese hamster DNA as well as DNA from human chromosomes other than 6. Thirty-seven of the 55 probes, however, were shown to map to human chromosome 6 by Southern blot hybridization with DNA from a panel of somatic cell hybrids. Eleven of the probes were mapped further by in situ hybridization. Four probes were localized to the short arm of chromosome 6, six to the long arm, and one to the centromeric region.  相似文献   

5.
Employing 16 polymorphic DNA markers as well as the chromosome 19 centromere heteromorphism, we have performed a genetic linkage study in 26 families with myotonic dystrophy. Fourteen of these markers had been assigned previously to one of five different intervals of the 19cen-19q13.2 segment by using somatic cell hybrids. For the long arm of chromosome 19, a genetic map that encompasses 9 polymorphic markers and the DM gene has been constructed. Our studies indicate that the DM and CKMM genes map distal to the ApoC2-ApoE gene cluster and to the anonymous polymorphic markers D19S15 and D19S16, but proximal to the D19S22 marker. The orientation of DM and CKMM remains to be determined.  相似文献   

6.
X-linked liver glycogenosis (XLG) is a glycogen storage disorder resulting from deficient activity of phosphorylase kinase (PHK). PHK consists of four different subunits: alpha, beta, gamma, and delta. Several genes encoding PHK subunits have been cloned and localized, but only the muscle alpha-subunit (PHKA) gene has been assigned to the X chromosome, in the region Xq12----q13. However, we have previously excluded the muscle PHKA gene as a candidate gene for the XLG mutation, as linkage analysis indicated that the mutation responsible for XLG is located in Xp22 and not in Xq12----q13. We report here the chromosomal localization by in situ hybridization of a liver PHKA gene to the distal region of chromosome Xp. Strong hybridization signals were observed on the distal part of the short arm of a chromosome identified as the X chromosome by cohybridization with an X chromosome-specific centromeric probe. The localization of this gene in the same chromosomal region as the disease gene responsible for XLG suggests that the liver PHKA gene is a highly likely candidate gene for the XLG mutation.  相似文献   

7.
We have tested linkage between the locus for the fragile-X [fra(X)] syndrome at Xq27.3 and five polymorphic restriction sites identified by four DNA probes mapping distal to Xq26.1. A maximum distance of approximately 15 centimorgans (cM) between Xq27.3 and the marker loci mapping to this region was predicted based on the physical chromosome length. Close linkage between the disease and marker loci was excluded for probes DXS19 and DXS37 (theta = .05, Z = -2.94 and Z = -4.17, respectively). These marker loci were estimated to be less than five cM apart but approximately 40 cM proximal to the fragile site, indicating that there is a significantly greater frequency of recombination in this region of the X chromosome than expected from the physical length. Linkage results for the other marker loci and the fra(X) syndrome were inconclusive. However, the pX45d probe locus appears very closely linked to the factor IX locus (Z = 1.94 at theta = 0) and is approximately 20 cM proximal to Xq27.3. A relative map of the polymorphic restriction sites, fra(X) syndrome locus, and factor IX locus was constructed by maximizing lod scores over the Xq26.1----q27.3 region.  相似文献   

8.
Using in situ hybridization and a panel of human X rodent somatic cell hybrids, which discriminates between four different regions of human chromosome 22, we have localized the gene for human platelet-derived endothelial cell growth factor (ECGF1) to 22q13, placing ECGF1 distal to the PDGFB locus at 22q12.3----q13.1.  相似文献   

9.
A woman with an abnormal karyotype, (46,X,der(X) (pter----q27::q27----q21), was analyzed using DNA probes in the region Xq27----qter. The results indicate that she is trisomic for the Factor IX locus, disomic for the locus DXS105 (cX55.7) and monosomic for the loci DXS98 (4D8), DXS52 (St14) and Factor VIII. This confirms the absence of the region Xq28 in the abnormal chromosome. Furthermore, the presence of only one copy of 4D8 and two copies of cX55.7 places the DXS98 locus distal to Factor IX and closer to the fragile X locus than DXS105.  相似文献   

10.
Summary Early replication of prometaphasic human sex chromosomes was studied with the bromodeoxyuridine (BrdU)-replication technique. The studies reveal that two distal segments of Xp, including bands Xp 22.13 and Xp 22.3, replicate early in S-phase and therefore may not be subject to random inactivation. Furthermore, the replication of these distal segments of Xp occurs synchronously with those of the short arm of the Y chromosome including bands Yp 11.2 and Yp 11.32. These segments of Xp and Yp correspond well to the pairing segment of the X and Y chromosomes where a synaptonemal complex forms at early pachytene of human spermatogenesis. The homologous early replication of Yp and the distal portion of Xp may be interpreted as a remnant left untouched by the differentiation of heteromorphic sex chromosomes from originally homomorphic autosomes. A third early replicating segment is situated on the long arm of the X chromosome and corresponds to band Xq 13.1. This segment may be correlated with the X-inactivation center postulated by Therman et al. (1979).  相似文献   

11.
Summary Cloned human X chromosome-specific DNA segments, derived from a recombinant phage library enriched for the human X and previously localized to different regions of the X, were used as probes in Southern blots to confirm the nature of a deletion of the long arm of the X chromosome as del (X)(q13) in a patient with some features of Turner's syndrome and suspected from cytologic studies to have a 46,XXq- karyotype. Two dimensional scanning densitometry of autoradiograms of the Southern blots was used to quantitate hybridization of the 32P-labeled probes, reinforcing visual analysis and permitting distinction between sequences present at one or two copies per diploid genome. Once thus characterized, DNA from the patient's cells was used in quantitatively analyzed Southern blots to refine the location of an additional DNA segment, previously mapped to somewhere in the proximal part of the long arm of the X chromosome, to the juxtacentromeric region of Xq, which has been hypothesized to be critical for X-inactivation. Cloned DNA probes such as that localized to the juxtacentromeric region of Xq should be useful for evaluating this hypothesis.  相似文献   

12.
A somatic cell hybrid has been constructed and characterized using fibroblasts from a phenotypically normal woman who possesses an X chromosome with an interstitial deletion of the short arm. High-resolution banding indicates that the deleted segment is either Xp22.13-p11.4 or Xp22.11-p11.23. Southern blot hybridization to previously mapped DNA sequences confirms that the missing segment of the X chromosome is a deletion and not an interstitial translocation and supports the cytogenetic interpretation that the deletion extends proximal of Xp11.3 and therefore probably comprises Xp22.11-p11.23. Three further DNA sequences have been localized to the region of the deleted segment. The following order has been assigned to the seven probes used: Xpter-RC8-pXUT22-(OA1,C7,M2C)-L1.28-RD6 -Xcen.  相似文献   

13.
The intrachromosomal localization of three X-linked gene loci (PGK, HGPRT and G6PD) has been determined using a somatic cell genetic approach. A human cell line possessing an X/14 translocation was used as one parent in the formation of human/mouse hybrids. The translocation separates the human X into two parts: Xp and t(Xq14q). The data indicate that all three X-linked loci segregate with the t(Xq14q) rearrangement product thus permitting their assignment to the X chromosome's long arm. Secondary rearrangements and data from other laboratories suggest that the order of the the three markers from the centromere to the distal end of the X long arm is PGK, HGPRT, G6PD. It was also observed that NP, an autosomal locus, segregated with the t(Xq14q) chromosome. This provides strong support for the assignment of NP to 14.  相似文献   

14.
New polymorphic DNA marker close to the fragile site FRAXA   总被引:9,自引:0,他引:9  
DNA from a human-hamster hybrid cell line, 908-K1B17, containing a small terminal portion of the long arm of the human X chromosome as well as the pericentric region of 19q was used as starting material for the isolation of an X-chromosome-specific DNA segment, RN1 (DXS369), which identifies a XmnI RFLP. Linkage analysis in fragile X families resulted in a maximum lod score of 15.3 at a recombination fraction of 0.05 between RN1 and fra(X). Analysis of recombinations around the fra(X) and distal to DXS105. Analysis of the marker content of hybrid cell line 908K1B17 suggests the localization of RN1 between DXS98 and fra(X). Heterozygosity of DXS369 is approximately 50%, which extends the diagnostic potential of RFLP analysis in fragile X families significantly.  相似文献   

15.
Genomic DNA segments for the coagulation factor VIIIc gene (F8C), which exhibits only limited restriction length polymorphism, map to the proximal region of band Xq28 by somatic cell hybridization analysis and in situ hybridization. Using somatic cell hybrids, we have obtained data which place probes DX13 (used to detect locus DXS15) and St14 (used to detect DXS52) distal to F8C, within band Xq28. Previous studies have mapped the factor IX gene (F9) and probe 52A (used to detect DXS51) proximal to F8C, in Xq26----q27 and Xq27, respectively (Camerino et al., 1984; Drayna et al., 1984; Mattei et al., 1985). Thus, the relative order of genetic marker loci in the Xq27----qter region is most likely cen-F9-DXS51-F8C-(DXS15, DXS52)-Xqter. The collection of these molecular probes is thus potentially useful in three-factor crosses of factor VIII gene segregation.  相似文献   

16.
Regional localization of 18 human X-linked DNA sequences   总被引:4,自引:0,他引:4  
A series of human probes with unique sequences has been isolated from a recombinant phage library constructed with DNA obtained from a human-hamster hybrid cell line. This cell line contained the X chromosome as the only human component. For 18 of these probes, a human X-chromosome origin has been confirmed and they have been regionally assigned by a combination of techniques: dosage studies utilizing DNA from human fibroblasts carrying X-chromosome duplications and deletions; the presence or absence of hybridization to digested DNA from hybrid lines carrying fragments of the X chromosome; and in situ hybridization to metaphase chromosomes. The use of dosage as a means to regionally assign probes significantly improves resolution of the X chromosome.  相似文献   

17.
The localization to 19q of the gene causing myotonic dystrophy (DM) has been defined more precisely by refinement of the physical location of several linked markers. A somatic cell hybrid mapping panel from cells with t(1;19), t(12;19), and t(X;19) translocation products was constructed to define five different intervals across 19q. In addition, we have derived a series of cell hybrids by irradiation of a der(19)-only hybrid to further subdivide the cen-q13.1 region. Using an array of 36 cloned genes, anonymous DNAs, and enzyme markers, we have tested the location of the panel breakpoints and refined the regional assignment of several of these markers. All markers tightly linked to DM are localized mainly within 19q13.2, thus suggesting that the DM gene is also close to this region.  相似文献   

18.
V chromosome 21 (ch. 21) flow-sorted library was screened for the presence of unique DNA segments which are specific for the 21st chromosome. By combining the techniques of somatic cell genetics and in situ hybridization, we have identified several of these recombinant probes and have regionally mapped one of them to the distal half of the long arm of chromosome 21 (q22.1- greater than qter). This represents the first report of the sublocalization of a unique DNA segment to chromosome 21 by in situ hybridization.  相似文献   

19.
Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase expressed in immature lymphocytes of the thymus and bone marrow, as well as certain leukemic cells. Chromosomal assignment of the gene coding for human TdT was accomplished by in situ hybridization of a 3H-labeled cDNA probe to human chromosome preparations and by Southern blot analysis of somatic cell hybrid DNAs. The human TdT gene was mapped to the region q23----q24 of chromosome 10. Breaks at this site have been reported in different translocations in human leukemias. The mouse TdT gene was assigned to chromosome 19 by Southern blot analysis of mouse X Chinese hamster somatic cell hybrids. This result adds a fourth locus to the conserved syntenic group on mouse chromosome 19 and human chromosome 10.  相似文献   

20.
Summary A recombinant DNA sequence, RB6, was isolated from a human X chromosome library and shown to be X-specific by hybridisation to DNA from a human-mouse somatic cell hybrid containing X as the only human chromosome. The cloned sequence was located on the long arm distal to Xq13 using a human-mouse somatic cell hybrid containing a partial human X chromosome. DNA samples isolated from control human females were digested with the restriction enzyme MspI, and analysed by blotting and hybridisation to the radioactive cloned DNA. Eight of 14 individuals from a random population showed a single hybridising band 7.5 kilobase pairs (kb) in length, but six showed an additional band 10.1 kb in length. DNA from 12 members of a family with X-linked thyroxine-binding globulin deficiency was analysed for the segregation of this polymorphism. The results show that the polymorphism is inherited in a Mendelian fashion, and that the disease locus is not closely linked to the polymorphic site. Such polymorphisms will be useful as markers for chromosome mapping and for the antenatal diagnosis of genetic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号