首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the lysosomal enzyme alpha-galactosidase A. This enzyme is responsible for the hydrolysis of terminal alpha-galactoside linkages in various glycolipids. An improved method of production of recombinant alpha-galactosidase A for use in humans is needed in order to develop new approaches for enzyme therapy. Human alpha-galactosidase A for use in enzyme therapy has previously been obtained from human sources and from recombinant clones derived from human cells, CHO cells, and insect cells. In this report we describe the construction of clones of the methylotrophic yeast Pichia pastoris that produce recombinant human alpha-galactosidase A. Recombinant human alpha-galactosidase A is secreted by these Pichia clones and the level of production is more than 30-fold greater than that of previously used methods. Production was optimized using variations in temperature, pH, cDNA copy number, and other variables using shake flasks and a bioreactor. Expression of the human enzyme increased with increasing cDNA copy number at 25 degrees C, but not at the standard growth temperature of 30 degrees C. The recombinant alpha-galactosidase A was purified to homogeneity using ion exchange (POROS 20 CM, POROS 20 HQ) and hydrophobic (Toso-ether, Toso-butyl) chromatography with a BioCAD HPLC Workstation. Purified recombinant alpha-galactosidase A was taken up by fibroblasts derived from Fabry disease patients and normal enzyme levels could be restored under these conditions. Analysis of the carbohydrate present on the recombinant enzyme indicated the predominant presence of N-linked high-mannose structures rather than complex carbohydrates.  相似文献   

2.
The endocytosis of alpha-galactosidase A was studied in cultured fibroblasts from patients with Fabry disease. Alpha-galactosidase A was purified from human placenta by chromatography on concanavalin A-Sepharose, DEAE-cellulose, and N-epsilon-aminocaproyl-alpha-D-galactosylamine-Sepharose. Separation of the high-uptake form of the enzyme from the low-uptake form was accomplished by chromatography on ECTEOLA-cellulose. With the high-uptake form of the enzyme, the uptake was linear at low concentrations of enzyme and had a Kuptake of 0.01 U/ml of medium that corresponds to a Km of 5.0 x 10(-9) M. At high concentrations of enzyme, it became saturated. The high-uptake form could be converted to the low-uptake form by treatment with acid phosphatase. Mannose-6-P strongly inhibited the active uptake of the enzyme. Once taken up into the lysosomes of Fabry disease fibroblasts, alpha-galactosidase A activity was rapidly lost in the first 2 days of incubation at 37 degrees C, but was fairly stable for the next 6 days. The half-life of internalized alpha-galactosidase A activity was calculated to be 4 days. Crosslinking of the enzyme with hexamethylene diisocyanate did not increase the intracellular stability of alpha-galactosidase A activity.  相似文献   

3.
We have overproduced the full-length human poly(ADP-ribose) polymerase (PARP) in Spodoptera frugiperda (Sf9) cells using a baculovirus expression vector system. Approx. 20 mg of purified protein from 5 x 10(8) Sf9 cells were obtained by a simple three-step purification procedure including 3-aminobenzamide affinity chromatography. The recombinant protein (rePARP), which migrates as a unique 116-kDa band on SDS-polyacrylamide gels, was identified as PARP by Western blotting using either polyclonal or monoclonal antibodies raised against the purified human and calf thymus enzymes. Furthermore, rePARP is a functional protein, as demonstrated by its ability to specifically bind Zn2+ and DNA, and to recognize single-strand breaks in DNA. The purified enzyme has the same affinity for NAD+ and turnover number as the human placental PARP. Thus, rePARP produced in insect cells is biologically active and suitable for functional analysis. The reproducibility of the overproduction and the simplicity of the purification protocol, as well as the yield of the produced protein, should greatly facilitate physicochemical and structural studies.  相似文献   

4.
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.  相似文献   

5.
Baculovirus has emerged as a novel gene delivery and vaccine vector, and the demand for purified baculovirus is rising due to the increasing in vivo applications. Since the baculoviral envelope protein gp64 is a glycoprotein, we aimed to develop a concanavalin A (Con A) chromatography process, which harnessed the possible affinity interaction between gp64 and Con A, for simple and effective baculovirus purification. Throughout the purification process the virus stability and recovery were assessed by quantifying the virus transducing titers [TT, defined as transducing units (TU) per milliliter] and viral particles (VP). We found that baculovirus stability was sensitive to buffer conditions and diafiltration with a tangential flow filtration system LabScale using 300 K membranes yielded recoveries of ≈75% in TT and 82% in VP. The diafiltered baculovirus strongly bound to the Con A column as evidenced by the low virus losses to the flow through and wash fractions. The wash steps eliminated >99% of protein impurities and elution with 0.6 M α‐D ‐methylmannoside at room temperature led to the recoveries of ≈16% in VP and ≈15.3% in TU. The resultant VP/TU ratio was as low as 41.4, attesting the high quality of the purified virus. Further elution with 1 M α‐D ‐methylmannoside recovered another 6% virus TU, yielding a cumulative recovery of ≈21.3% in TU. These data demonstrated for the first time that Con A chromatography is suitable for baculovirus purification, and may be used for the purification of other viruses with surface glycoproteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Aminopeptidase B (Ap-B) is a ubiquitous enzyme and its physiological function still remains an open question. This Zn2+ -exopeptidase catalyzes the amino-terminal cleavage of basic residues of peptide or protein substrates, indicating a role in precursor processing. In addition, the enzyme exhibits a residual capacity to hydrolyze leukotriene A4 (LTA4) into the pro-inflammatory lipid mediator leukotriene B4 (LTB4) in vitro. This potential bi-functional nature of Ap-B is supported by a close structural relationship with LTA4 hydrolase, which hydrolyzes LTA4 into LTB4, in vivo, and exhibits an aminopeptidase activity, in vitro. Structural studies are necessary for the detailed understanding of the bi-functional enzymatic mechanism of Ap-B. In this study, we report cDNA cloning, baculovirus expression, and purification of the rat Ap-B (rAp-B). The Ap-B cDNA was constructed from extracted rat testes total RNA and introduced into the pBAC1 baculovirus transfer vector to generate recombinant baculoviruses. rAp-B expression, with or without COOH-hexahistidine tag, was tested in two different insect cell hosts (Sf9 and H5). The enzyme is secreted into the insect cell culture medium, which allowed a rapid purification of the protein. The His-tagged rAp-B was purified using metal affinity resin while the native recombinant rAp-B was partially purified using a single step DEAE Trisacryl ion exchange column. Although the recombinant rAp-B exhibits biochemical properties equivalent to those of the rat testes purified protein, the presence of the histidine-tag seems to partially inhibit the exopeptidase activity. However, this report shows that baculovirus-infected cells are a useful system to produce rat Ap-B for use in studying enzymatic mechanisms in vitro and 3D structure.  相似文献   

7.
A simplified method for the production of recombinant baculovirus   总被引:3,自引:0,他引:3  
A simplified method for producing recombinant baculovirus for expression of foreign genes is described. The method utilizes insect cells infected with the wild-type virus before transfection with the plasmid transfer vector, instead of the standard procedure utilizing cotransfection with a plasmid and viral DNA. Recombinant virus is preselected by a limiting dilution dot-blot hybridization procedure, rather than by morphologic criteria alone. In addition, we have found that plasmid purification by anion-exchange chromatography is as efficacious for transfection as plasmid purified by cesium chloride density gradient centrifugation. These modifications allows for an efficient, rapid, inexpensive and more objective protocol for the selection of recombinant baculovirus compared to the conventional protocol.  相似文献   

8.
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A. Most mutant enzyme is catalytically active but due to misfolding retained in the endoplasmic reticulum. We have tested 4-phenylbutyrate for its potential to rescue various trafficking incompetent mutant alpha-galactosidase A. Although we found that the trafficking blockade for endoplasmic reticulum-retained mutant alpha-Gal A was released, neither a mature enzyme was detectable in transgenic mice fibroblasts nor a reversal of lysosomal Gb3 storage in fibroblasts from Fabry patients could be observed. Because of lack of functionality of rescued mutant alpha-galactosidase A, 4-phenylbutyrate seems to be of limited use as a chemical chaperone for Fabry disease.  相似文献   

9.
The substrate analog alpha-D-galactosylamine was synthesized, linked to 6-aminohexanoic acid, and coupled to carboxyhexyl-Sepharose. This affinity support permitted the purification of human alpha-galactosidase A (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) from spleen, placenta, and plasma. When used in conjunction with conventional procedures, affinity chromatography enabled the rapid and specific purification of alpha-galactosidase A from each source. Significantly, pyrogenic endotoxins were eliminated from enzyme preparations by the use of the affinity column. Splenic alpha-galactosidase A was purified in high yield (38%) with a specific activity of 1.9 X 10(6) units/mg. The purified enzyme was a homodimer with a native molecular weight of 101,000 and a subunit weight of 49,800. The UV absorption coefficient was E280 1% = 18 and the lambda max was 282 nm. The plasma form was purified with a markedly improved yield to a specific activity (229,000 units/mg) which was 3 times greater than that achieved previously. The enzymes from plasma, spleen, and placenta were immunologically identical. The physical and kinetic properties of the purified enzymes were consistent with and confirmed previous findings.  相似文献   

10.
OBJECTIVE: To revisit Fabry disease, a rare X-linked metabolic glycosphingolipid storage disease caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (alpha-gal A). METHOD: Summary of the existing knowledge of Fabry disease including the clinical feature of Fabry disease and the recent breakthrough in the treatment of Fabry patients with the development of recombinant human alpha-gal A. CONCLUSION: The diffuse organ manifestations of Fabry disease resemble medical endocrinological diseases, and medical endocrinology might be an appropriate speciality to manage the treatment in collaboration with other specialists and clinical geneticists.  相似文献   

11.
A baculovirus expression vector was constructed with the tissue plasminogen activator (TPA) cDNA under the control of the viral polyhedrin promoter. After infection of insect cells with the recombinant baculovirus, active TPA was secreted into the medium in which these cells were grown. TPA was isolated from the conditioned media using metal chelate affinity chromatography followed by immunoaffinity purification using mouse monoclonal anti-human TPA coupled to Sepharose. Sodium dodecyl sulfate-gel electrophoresis under reducing conditions and sequence analysis of recombinant human TPA have revealed a two-chain form of the enzyme. The N-terminal amino acid was identified to be serine, indicating that it was processed at its N-terminus by the insect cell culture in a manner similar to that observed for mammalian cells. The relative specific activity of recombinant TPA from insect cells is comparable to that of Bowes melanoma TPA standard. Its activity is stimulated in the presence of fibrinogen fragments, but by a factor about 2.3-fold lower than the Bowes melanoma TPA. The apparent molecular weight of recombinant TPA from insect cells was about 60K by fibrin agar activity gels, suggesting less complex glycosylation than recombinant TPA from mammalian cells.  相似文献   

12.
Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N‐terminally His‐tagged NiV M protein in insect cells. A time‐course study demonstrated that the highest yield of recombinant M protein (400–500 μg) was expressed from infected cells 3 days after infection. A single‐step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme‐linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:171–177, 2016  相似文献   

13.
The coleopteran firefly, Photinus pyralis, luciferase was produced in lepidopteran Trichoplusia ni insect cells using a baculovirus expression vector. The recombinant protein was equipped with a polyhistidine affinity tag at the carboxyl terminus and purified by immobilized metal-ion affinity chromatography in combination with an expanded bed adsorption system. This approach enabled an efficient, one-step purification protocol of a genetically modified luciferase with properties similar to those of the authentic counterpart. According to light emission measurements, the final yield of highly purified protein was 23 mg l(-1) of cell culture. In addition, no specific interaction of interfering substances, such as, ATP, adenylate kinase, nucleoside diphosphokinase, as well as, creatine kinase of the final preparation were identified. Together, the results presented here clearly show that the baculovirus expression system in combination with immobilized metal-ion affinity chromatography is a potential strategy for process scale-up of polyhistidine tagged insect luciferase.  相似文献   

14.
Fabry disease is a lysosomal storage disease arising from deficiency of the enzyme alpha-galactosidase A. Two recombinant protein therapeutics, Fabrazyme (agalsidase beta) and Replagal (agalsidase alfa), have been approved in Europe as enzyme replacement therapies for Fabry disease. Both contain the same human enzyme, alpha-galactosidase A, but they are produced using different protein expression systems and have been approved for administration at different doses. To determine if there is recognizable biochemical basis for the different doses, we performed a comparison of the two drugs, focusing on factors that are likely to influence biological activity and availability. The two drugs have similar glycosylation, both in the type and location of the oligosaccharide structures present. Differences in glycosylation were mainly limited to the levels of sialic acid and mannose-6-phosphate present, with Fabrazyme having a higher percentage of fully sialylated oligosaccharides and a higher level of phosphorylation. The higher levels of phosphorylated oligomannose residues correlated with increased binding to mannose-6-phosphate receptors and uptake into Fabry fibroblasts in vitro. Biodistribution studies in a mouse model of Fabry disease showed similar organ uptake. Likewise, antigenicity studies using antisera from Fabry patients demonstrated that both drugs were indistinguishable in terms of antibody cross-reactivity. Based on these studies and present knowledge regarding the influence of glycosylation on protein biodistribution and cellular uptake, the two protein preparations appear to be functionally indistinguishable. Therefore, the data from these studies provide no rationale for the use of these proteins at different therapeutic doses.  相似文献   

15.
Infection of insect cells with baculovirus expression constructs is commonly used to produce recombinant proteins that require post-translational modifications for their activity, such as mammalian proteins. However, technical restraints limit the capacity of insect cell-based culture systems to be scaled up to produce the large amounts of recombinant protein required for human pharmaceuticals. In this study, we designed an automated insect rearing system and whole insect baculovirus expression system (PERLXpress™) for the expression and purification of recombinant proteins on a large scale. As a test model, we produced a recombinant mouse anti-botulinum antibody fragment (Fab) in Trichoplusia ni larvae. A recombinant baculovirus co-expressing the Fab heavy and light chains together with N-terminal sequences from the silkworm hormone bombyxin, to direct proteins into the secretory pathway, was constructed. Fifth instar larvae were reared and infected orally with recombinant (pre- occluded) baculovirus using the automated system and harvested approximately after 4 days. The total yield of recombinant Fab was 1.1 g/kg of larvae, resulting in 127 mg of pure Fab in one production run. The Fab was purified to homogeneity using immobilized metal affinity chromatography, gel filtration, and anion exchange chromatography. The identity of the purified protein was verified by Western blots and size-exclusion chromatography. Purified recombinant Fab was used to detect botulinum toxin in ELISA experiments, demonstrating that the heavy and light chains were properly assembled and folded into functional heterodimers. We believe that this is the first demonstration of the expression of a recombinant antibody in whole insect larvae. Our results demonstrate that a baculovirus-whole larvae expression system can be used to express functionally active recombinant Fab fragments. As the PERLXpress™ system is an automated and linearly scalable technology, it represents an attractive alternative to insect cell culture for the production of large amounts of human pharmaceuticals.  相似文献   

16.
Large quantities of recombinant human aldose reductase were produced using Spodoptera frugiperda cells and properties of the enzyme were characterized. Direct purification of the recombinant aldose reductase by affinity column chromatography using Matrex gel orange A yielded a single 36 kDa band, similar in size to the purified human muscle aldose reductase, on a sodium dodecyl sulfate-polyacrylamide gel after silver staining. The isoelectric point of the recombinant enzyme was 5.85 which is identical to the human muscle aldose reductase. Following the treatment with an acylamino-acid releasing enzyme, the blocked NH2-terminal amino acid was identified to be acetylalanine. The successive NH2-terminal sequence and that of the COOH-terminal peptide concurred with the expected translated sequence. Kinetic analyses of the recombinant enzyme activity for various substrates and the cofactor, NADPH, demonstrated a good agreement with the previously reported kinetic data on the purified human aldose reductase. A high concentration of (NH4)2SO4 elicited a significant increase in both Km and Kcat for DL-glyceraldehyde as well as D-glucose. Although IC50 values for most of the aldose reductase inhibitors with recombinant enzyme were found to fall within the comparable range of those obtained with nonhuman mammalian enzymes, the IC50 value for epalrestat was more than 10-fold higher in the recombinant enzyme. These results indicate that the recombinant human aldose reductase expressed in the baculovirus system possesses structurally and enzymatically similar properties as those reported for the native human enzyme and should serve as a superior enzyme preparation to nonhuman mammalian enzymes for the screening of the efficacy and potency of newly developed aldose reductase inhibitors.  相似文献   

17.
Baculovirus-display technology utilizing the gp64 envelope protein has been developed. A simple and efficient process to separate the virus from the majority of the protein contaminants may be needed for the future demand of pure and functional baculovirus vectors ideal for vaccine- and gene-delivery applications. In the present study, using Bombyx mori (silkworm) larvae as a host, scFv (single-chain variable fragment)-surface displaying recombinant baculovirus production and its purification from silkworm larval haemolymph by SEC (size-exclusion chromatography) were demonstrated. The amounts of scFv were 4-8 μg/ml in the haemolymph. The scFv-gp64 fusion protein was confirmed to be incorporated into the cell membrane and the BmNPV (B. mori nucleopolyhedrovirus) surface by immunofluorescence microscopy and Western blotting. rBmNPV (recombinant BmNPV) was purified to higher purity by SEC using Sephacryl S-1000 column chromatography than by sucrose-density-gradient centrifugation. The recovery of purified rBmNPV was 22.2%, and the virus purity in the SEC fraction was increased 269-fold compared with its purity in haemolymph. Judging from the results of ELISA, approx. 0.9% of the total baculovirus-particle proteins were occupied by scFv on their surface. A BmNPV-based silkworm-larval system is suitable for large-scale production of baculovirus-surface-displayed proteins or peptides in comparison with a cell-culture system. The present study will be useful for future BmNPV-application studies for gene delivery and vaccine trials.  相似文献   

18.
基因工程α-半乳糖苷酶的制备及其性质研究   总被引:11,自引:0,他引:11  
在获得可分泌表达α 半乳糖苷酶基因工程毕赤酵母菌株的基础上 ,尝试了基因工程α 半乳糖苷酶在 5L发酵罐中的表达以及从发酵液中纯化α 半乳糖苷酶的研究。在 4L无机盐培养基中接种 0 .4LpPIC9K Gal GS115培养物 ,最终得到 3 .5L发酵液。离心所得上清中总蛋白含量为 2 .1g L。根据发酵液中目的蛋白含量高、杂质少等特点 ,设计了如下的纯化流程 :离心→超滤→阳离子交换层析→脱盐→浓缩。纯化后电泳银染结果呈单一蛋白带 ,总回收率 41%。通过测定米氏常数等生化性质对重组酶进行鉴定后 ,完成了人B型红细胞的酶解实验。结果表明 ,从发酵液中纯化的α 半乳糖苷酶可将B型红细胞改造成O型红细胞。本研究同时在数量和质量上为α 半乳糖苷酶在众多领域的广泛应用奠定了基础。  相似文献   

19.
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the lysosomal enzyme α-galactosidase A. This enzyme is responsible for the hydrolysis of terminal α-galactoside linkages in various glycolipids. An improved method of production of recombinant α-galactosidase A for use in humans is needed in order to develop new approaches for enzyme therapy. Human α-galactosidase A for use in enzyme therapy has previously been obtained from human sources and from recombinant clones derived from human cells, CHO cells, and insect cells. In this report we describe the construction of clones of the methylotrophic yeast Pichia pastoris that produce recombinant human α-galactosidase A. Recombinant human α-galactosidase A is secreted by these Pichia clones and the level of production is more than 30-fold greater than that of previously used methods. Production was optimized using variations in temperature, pH, cDNA copy number, and other variables using shake flasks and a bioreactor. Expression of the human enzyme increased with increasing cDNA copy number at 25°C, but not at the standard growth temperature of 30°C. The recombinant α-galactosidase A was purified to homogeneity using ion exchange (POROS 20 CM, POROS 20 HQ) and hydrophobic (Toso-ether, Toso-butyl) chromatography with a BioCAD HPLC Workstation. Purified recombinant α-galactosidase A was taken up by fibroblasts derived from Fabry disease patients and normal enzyme levels could be restored under these conditions. Analysis of the carbohydrate present on the recombinant enzyme indicated the predominant presence of N-linked high-mannose structures rather than complex carbohydrates.  相似文献   

20.
The synthesis and processing of the human lysosomal enzyme alpha-galactosidase A was examined in normal and Fabry fibroblasts. In normal cells, alpha-galactosidase A was synthesized as an Mr = 50,500 precursor, which contained phosphate groups in oligosaccharide chains cleavable by endoglucosaminidase H. The precursor was processed via ill-defined intermediates to a mature Mr 46,000 form. Processing was complete within 3-7 days after synthesis. In the presence of NH4Cl and in I-cell fibroblasts, the majority of newly synthesized alpha-galactosidase A was secreted as an Mr = 52,000 form. For comparison, the processing and stability of alpha-galactosidase A were examined in fibroblasts from five unrelated patients with Fabry disease, which is caused by deficient alpha-galactosidase A activity. In one cell line, synthesis of immunologically cross-reacting polypeptides was not detectable. In another, the synthesis, processing, and stability of alpha-galactosidase A was indistinguishable from that in normal fibroblasts. In a third Fabry cell line, the mutation retarded the maturation of alpha-galactosidase A. Finally, in two cell lines, alpha-galactosidase A polypeptides were synthesized that were rapidly degraded following delivery to lysosomes. These results clearly indicate that Fabry disease comprises a heterogeneous group of mutations affecting synthesis, processing, and stability of alpha-galactosidase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号