首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   

2.
Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  相似文献   

3.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

4.
Complete removal of plants and soil to exposed bedrock, in order to eradicate the Hole-in-the-Donut (HID) region of the Everglades National Park, FL, of exotic invasive plants, presented the opportunity to monitor the redevelopment of soil and the associated microbial communities along a short-term restoration chronosequence. Sampling plots were established for sites restored in 1989, 1997, 2000, 2001, and 2003. The goal of this study was to characterize the activity and diversity of denitrifying bacterial populations in developing HID soils in an effort to understand changes in nitrogen (N) cycling during short-term primary succession. Denitrifying enzyme activity (DEA) was detected in soils from all sites, indicating a potential for N loss via denitrification. However, no correlation between DEA and time since disturbance was observed. Diversity of bacterial denitrifiers in soils was characterized by sequence analysis of nitrite reductase genes (nirK and nirS) in DNA extracts from soils ranging in nitrate concentrations from 1.8 to 7.8 mg kg−1. High levels of diversity were observed in both nirK and nirS clone libraries. Statistical analyses of clone libraries suggest a different response of nirS- and nirK-type denitrifiers to factors associated with soil redevelopment. nirS populations demonstrated a linear pattern of succession, with individual lineages represented at each site, while multiple levels of analysis suggest nirK populations respond in a grouped pattern. These findings suggest that nirK communities are more sensitive than nirS communities to environmental gradients in these soils.  相似文献   

5.
We determined the compositions of bacterioplankton communities in surface waters of coastal California using clone libraries of 16S rRNA genes and fluorescence in situ hybridization (FISH) in order to compare the community structures inferred from these two culture-independent approaches. The compositions of two clone libraries were quite similar to those of clone libraries of marine bacterioplankton examined by previous studies. Clones from γ-proteobacteria comprised ca. 28% of the libraries, while approximately 55% of the clones came from α-proteobacteria, which dominated the clone libraries. The Cytophaga-Flavobacter group and three others each comprised 10% or fewer of the clone libraries. The community composition determined by FISH differed substantially from the composition implied by the clone libraries. The Cytophaga-Flavobacter group dominated 8 of the 11 communities assayed by FISH, including the two communities assayed using clone libraries. On average only 10% of DAPI (4′,6′-diamidino-2-phenylindole)-stained bacteria were detected by FISH with a probe for α-proteobacteria, but 30% of DAPI-stained bacteria appeared to be in the Cytophaga-Flavobacter group as determined by FISH. α-Proteobacteria were greatly overrepresented in clone libraries compared to their relative abundance determined by FISH, while the Cytophaga-Flavobacter group was underrepresented in clone libraries. Our data show that the Cytophaga-Flavobacter group can be a numerically dominant component of coastal marine bacterioplankton communities.  相似文献   

6.
Nitrogen flux into the coastal environment via submarine groundwater discharge may be modulated by microbial processes such as denitrification, but the spatial scales at which microbial communities act and vary are not well understood. In this study, we examined the denitrifying community within the beach aquifer at Huntington Beach, California, where high-nitrate groundwater is a persistent feature. Nitrite reductase-encoding gene fragments (nirK and nirS), responsible for the key step in the denitrification pathway, were PCR amplified, cloned, and sequenced from DNAs extracted from aquifer sediments collected along a cross-shore transect, where groundwater ranged in salinity from 8 to 34 practical salinity units and in nitrate concentration from 0.5 to 330 μM. We found taxonomically rich and novel communities, with all nirK clones exhibiting <85% identity and nirS clones exhibiting <92% identity at the amino acid level to those of cultivated denitrifiers and other environmental clones in the database. Unique communities were found at each site, despite being located within 40 m of each other, suggesting that the spatial scale at which denitrifier diversity and community composition vary is small. Statistical analyses of nir sequences using the Monte Carlo-based program ∫-Libshuff confirmed that some populations were indeed distinct, although further sequencing would be required to fully characterize the highly diverse denitrifying communities at this site.  相似文献   

7.
The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.  相似文献   

8.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the α, β, and γ Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.  相似文献   

9.
To understand the composition and structure of denitrifying communities in the oxygen-deficient zone off the Pacific coast of Mexico, the molecular diversity of nir genes from sediments obtained at four stations was examined by using a PCR-based cloning approach. A total of 50 operational taxonomic units (OTUs) for nirK and 82 OTUs for nirS were obtained from all samples. Forty-four of the nirS clones and 31 of the nirK clones were sequenced; the levels of similarity of the nirS clones were 52 to 92%, and the levels of similarity of the nirS clones were 50 to 99%. The percentages of overlapping OTUs between stations were 18 to 30% for nirS and 5 to 8% for nirK. Sequence analysis revealed that 26% of the nirS clones were related to the nirS genes of Alcaligenes faecalis (80 to 94% similar) and Pseudomonas stutzeri (80 to 99%), whereas 3 to 31% of the nirK clones were closely related to the nirK genes of Pseudomonas sp. strain G-179 (98 to 99%), Bradyrhizobium japonicum (91%), Blastobacter denitrificans (83%), and Alcaligenes xylosoxidans (96%). The rest of the clones, however, were less than 80% similar to nirS and nirK sequences available in sequence databases. The results of a principal-component analysis (PCA) based on the percentage of OTUs and biogeochemical data indicated that the nitrate concentration and oxygen have an effect on the denitrifying communities. The communities at the stations in oxygen-deficient zones were more similar than the communities at the stations in the oxygenated zone. The denitrifying communities were more similar at the stations that were closer together and had similar nitrate levels. Also, the results of PCA based on biogeochemical properties suggest that geographic location and biogeochemical conditions, especially the nitrate and oxygen levels, appear to be the key factors that control the structure of denitrifying communities.  相似文献   

10.
The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH4, H2, pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH4, H2, pH, and ORP revealed that acid and H2 production occurred in the upper part of the granule, below which H2 consumption and CH4 production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H2 was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH4 in the inner layer. We determined the effective diffusion coefficient for H2 in the anaerobic granules to be 2.66 × 10−5 cm2 s−1, which was 57% in water.  相似文献   

11.
This study reports the use of culture-independent and culture-dependent approaches to identify naturally occurring communities of Bacteria and Fungi fouling the surfaces of concrete structures with and without an acrylic paint coating in Georgia, USA. Genomic DNA was extracted from four different sites and PCR amplification of bacterial ribosomal RNA (16S rRNA) genes and the internal transcribed spacer (ITS) region of fungal rRNA genes was conducted. Bacterial and fungal community composition was determined by restriction analysis of amplified DNA of eight clone libraries and sequencing. Five bacterial phyla were observed, and representatives of the phylum Cyanobacteria and the classes Betaproteobacteria and Gammaproteobacteria dominated the bacterial clone libraries. The ITS region of rRNA gene sequences revealed the dominant phylotypes in the fungal clone libraries to be most closely related to Alternaria, Cladosporium, Epicoccum and Udeniomyces. The majority of these fungal genera could be cultured from the sites and successfully used to foul concrete in laboratory-based experiments. While the fungal sequences were most closely related to cultured isolates, the vast majority of bacterial sequences in the libraries were related to uncultured environmental clones. Results show phylogenetically distinct microbial populations occurring at the four sites.  相似文献   

12.
The purpose of this study was to investigate the diversity of denitrifier community during agricultural waste composting. The diversity and dynamics of the denitrifying genes (nirK and nirS) were determined using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between physico-chemical parameters and denitrifying genes structures were simultaneously evaluated by redundancy analysis (RDA). Phylogenetic analysis indicated that nirK clones grouped into six clusters and nirS clones into two major clusters, respectively. The results showed a very high diversity of nir gene sequences within composting samples. RDA showed that the nirK and nirS gene structures were significantly related to pH and pile temperature (P?<?0.05). Significant amounts of the variation (49.2 and 38.3 % for nirK and nirS genes, respectively) were explained by pH and pile temperature, suggesting that those two parameters were the most likely ones to influence, or be influenced by the denitrifiers harboring nirK and nirS genes.  相似文献   

13.
Investigation of the diversity of nirK and nirS in denitrifying bacteria revealed that salinity decreased the diversity in a nitrate-containing saline wastewater treatment system. The predominant nirS clone was related to nirS derived from marine bacteria, and the predominant nirK clone was related to nirK of the genus Alcaligenes.  相似文献   

14.
The population dynamics of Archaea after flooding of an Italian rice field soil were studied over 17 days. Anoxically incubated rice field soil slurries exhibited a typical sequence of reduction processes characterized by reduction of nitrate, Fe3+, and sulfate prior to the initiation of methane production. Archaeal population dynamics were followed using a dual approach involving molecular sequence retrieval and fingerprinting of small-subunit (SSU) rRNA genes. We retrieved archaeal sequences from four clone libraries (30 each) constructed for different time points (days 0, 1, 8, and 17) after flooding of the soil. The clones could be assigned to known methanogens (i.e., Methanosarcinaceae, Methanosaetaceae, Methanomicrobiaceae, and Methanobacteriaceae) and to novel euryarchaeotal (rice clusters I, II, and III) and crenarchaeotal (rice clusters IV and VI) lineages previously detected in anoxic rice field soil and on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983–4989, 1998). During the initiation of methanogenesis (days 0 to 17), we detected significant changes in the frequency of individual clones, especially of those affiliated with the Methanosaetaceae and Methanobacteriaceae. However, these findings could not be confirmed by terminal restriction fragment length polymorphism (T-RFLP) analysis of SSU rDNA amplicons. Most likely, the fluctuations in sequence composition of clone libraries resulted from cloning bias. Clonal SSU rRNA gene sequences were used to define operational taxonomic units (OTUs) for T-RFLP analysis, which were distinguished by group-specific TaqI restriction sites. Sequence analysis showed a high degree of conservation of TaqI restriction sites within the different archaeal lineages present in Italian rice field soil. Direct T-RFLP analysis of archaeal populations in rice field soil slurries revealed the presence of all archaeal lineages detected by cloning with a predominance of terminal restriction fragments characteristic of rice cluster I (389 bp), Methanosaetaceae (280 bp), and Methanosarcinaceae/rice cluster VI (182 bp). In general, the relative gene frequency of most detected OTUs remained rather constant over time during the first 17 days after flooding of the soil. Most minor OTUs (e.g., Methanomicrobiaceae and rice cluster III) and Methanosaetaceae did not change in relative frequency. Rice cluster I (37 to 30%) and to a lesser extent rice cluster IV as well as Methanobacteriaceae decreased over time. Only the relative abundance of Methanosarcinaceae (182 bp) increased, roughly doubling from 15 to 29% of total archaeal gene frequency within the first 11 days, which was positively correlated to the dynamics of acetate and formate concentrations. Our results indicate that a functionally dynamic ecosystem, a rice field soil after flooding, was linked to a relatively stable archaeal community structure.  相似文献   

15.
Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the alpha, beta, delta, and gamma subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing delta-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the delta-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.  相似文献   

16.
The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.  相似文献   

17.
Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.  相似文献   

18.
Freshwater scarcity and regulations on wastewater disposal have necessitated the reuse of treated wastewater (TWW) for soil irrigation, which has several environmental and economic benefits. However, TWW irrigation can cause nutrient loading to the receiving environments. We assessed bacterial community structure and associated biogeochemical changes in soil plots irrigated with nitrate-rich TWW (referred to as pivots) for periods ranging from 13 to 30 years. Soil cores (0 to 40 cm) were collected in summer and winter from five irrigated pivots and three adjacently located nonirrigated plots. Total bacterial and denitrifier gene abundances were estimated by quantitative PCR (qPCR), and community structure was assessed by 454 massively parallel tag sequencing (MPTS) of small-subunit (SSU) rRNA genes along with terminal restriction fragment length polymorphism (T-RFLP) analysis of nirK, nirS, and nosZ functional genes responsible for denitrification of the TWW-associated nitrate. Soil physicochemical analyses showed that, regardless of the seasons, pH and moisture contents (MC) were higher in the irrigated (IR) pivots than in the nonirrigated (NIR) plots; organic matter (OM) and microbial biomass carbon (MBC) were higher as a function of season but not of irrigation treatment. MPTS analysis showed that TWW loading resulted in the following: (i) an increase in the relative abundance of Proteobacteria, especially Betaproteobacteria and Gammaproteobacteria; (ii) a decrease in the relative abundance of Actinobacteria; (iii) shifts in the communities of acidobacterial groups, along with a shift in the nirK and nirS denitrifier guilds as shown by T-RFLP analysis. Additionally, bacterial biomass estimated by genus/group-specific real-time qPCR analyses revealed that higher numbers of total bacteria, Acidobacteria, Actinobacteria, Alphaproteobacteria, and the nirS denitrifier guilds were present in the IR pivots than in the NIR plots. Identification of the nirK-containing microbiota as a proxy for the denitrifier community indicated that bacteria belonged to alphaproteobacteria from the Rhizobiaceae family within the agroecosystem studied. Multivariate statistical analyses further confirmed some of the above soil physicochemical and bacterial community structure changes as a function of long-term TWW application within this agroecosystem.  相似文献   

19.
Prokaryotic Diversity in Zostera noltii-Colonized Marine Sediments   总被引:2,自引:0,他引:2       下载免费PDF全文
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was δ-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was γ-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

20.
NotI linking clones contain sequences flanking NotI recognition sites and were previously shown to be tightly associated with CpG islands and genes. To directly assess the value of NotI clones in genome research, high density grids with 50 000 NotI linking clones originating from six representative NotI linking libraries were constructed. Altogether, these libraries contained nearly 100 times the total number of NotI sites in the human genome. A total of 3437 sequences flanking NotI sites were generated. Analysis of 3265 unique sequences demonstrated that 51% of the clones displayed significant protein similarity to SWISSPROT and TREMBL database proteins based on MSPcrunch filtering with stringent parameters. Of the 3265 sequences, 1868 (57.2%) were new sequences, not present in the EMBL and EST databases (similarity  90%). Among these new sequences, 795 (24.3%) showed similarity to known proteins and 712 (21.8%) displayed an identity of >75% at the nucleotide level to sequences from EMBL or EST databases. The remaining 361 (11.1%) sequences were completely new, i.e. <75% identical. The work also showed tight, specific association of NotI sites with the first exon and suggest that the so-called 3′ ESTs can actually be generated from 5′-ends of genes that contain NotI sites in their first exon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号