首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Extant hominoids, including humans, are well known for their inability to swim instinctively. We report swimming and diving in two captive apes using visual observation and video recording. One common chimpanzee and one orangutan swam repeatedly at the water surface over a distance of 2–6 m; both individuals submerged repeatedly. We show that apes are able to overcome their negative buoyancy by deliberate swimming, using movements which deviate from the doggy‐paddle pattern observed in other primates. We suggest that apes' poor swimming ability is due to behavioral, anatomical, and neuromotor changes related to an adaptation to arboreal life in their early phylogeny. This strong adaptive focus on arboreal life led to decreased opportunities to interact with water bodies and consequently to a reduction of selective pressure to maintain innate swimming behavior. As the doggy paddle is associated with quadrupedal walking, a deviation from terrestrial locomotion might have interfered with the fixed rhythmic action patterns responsible for innate swimming. Am J Phys Anthropol 152:156–162, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
    
Jumping performance is relevant for lizards in many ecological contexts and might be favoured during the colonization of structurally complex habitats. Although ground-dwelling lizards use jumps to overcome small obstacles in their natural environments, jumping capacity has been mostly studied in arboreal species. Here, we analysed the evolution of jumping behaviour and performance in lizards from eight ground-dwelling species of Tropidurinae attempting to cross obstacles of different heights in a jumping track, both when undisturbed and under continuous stimulation. To establish ecological correlates with habitat complexity, individuals from two contrasting Brazilian habitats, the arid Caatingas (sand species) and the savannah-like Cerrados (rock species), were compared. Rock species jumped more often and crossed higher obstacles than sand ones in both tests, and performed more vertical than horizontal jumps. Although sand species performed less jumps, they were more successful at crossing the obstacles presented in comparison with rock species. Phylogenetic analyses confirmed these findings and demonstrated a large divergence in jumping capacity between sister-species from different habitats. Therefore, the differences in propensity and endurance for jumping activity appear to be independent of phylogenetic relationships in Tropidurinae and likely reflect an adaptation to the contrasting environments inhabited. The ecological implications of these findings are discussed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 393–402.  相似文献   

3.
4.
5.
6.
7.
Martens  Koen 《Hydrobiologia》2000,419(1):83-101
Specific Mate Recognition Systems (SMRS) consist of a set of morphological, behavioural and physiological traits which allow mate recognition. The Limnocytherinae, a lineage of non-marine podocopid Ostracoda, have a relatively wide diversity of copulatory modules, a concept largely congruent with the morphological part of the SMRS. The present paper describes the various copulatory modules in some detail and discusses potential mechanisms responsible for the divergence of these modules. Although none of the processes was thus far demonstrated directly, resulting patterns provide indirect evidence that four different mechanisms contribute. Stochastic processes (chance) as well as developmental and other phylogenetic constraints are involved in the initial selection (choice) of modified structures. Subsequent (positive) directional sexual selection on traits of the recognition systems causes radiative speciation within lineages. At all times, natural selection acts on the development of these structures, either stabilising or negative directional. A number of potential tests for these hypotheses are suggested.  相似文献   

8.
    
Julian Huxley showed that within‐species (static) allometric (power‐law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow‐sense allometry. Here, we present the first phylogenetic comparative study of narrow‐sense allometric exponents based on a reanalysis of data on eye span and body size in stalk‐eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking “optima” based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2–3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million‐year time scales, but cannot rule out that static allometry may act as a constraint on eye‐span adaptation at shorter time scales.  相似文献   

9.
    
We consider differences between dipteran, hymenopteran and coleopteran parasitoids in the following categories: taxonomic range and developmental stage of hosts attacked; habitats they are attacked in; developmental stage of the parasitoid contacting the host; occurrence of phoresy, and attacking hosts during flight. Using existing phylogenetic classifications we reconstruct possible ancestral conditions to the parasitoid clades in the three orders. By considering these as phylogenetic constraints and potentialities we attempt to account for the observed differences between the parasitoids within the orders.  相似文献   

10.
Although variance in life history parameters is well known from comparisons among broad phylogenetic groups of marine invertebrates, there is still an outstanding need to increase empirical studies that compare closely related species. If the species under study share a recent common ancestor and developmental strategy, there is an opportunity to contrast maternal investment against interspecific variation while controlling for evolutionary distance. Furthermore, when these species co-occur, it allows for exploration of potential character displacement. We examined egg size and other factors related to reproduction in four closely related species, co-occurring nudibranchs belonging to the monophyletic Chromodoris planar spawning clade. The duration of oviposition appeared to be conserved and may be phylogenetically constrained in these four co-occurring species. In contrast, egg size differed significantly among species, but was not influenced by parental body length or position within the egg mass for any of the species. The number of egg mass whorls also varied, but did not correspond to the interspecific differences in parental body length. These results suggest that some significant differences exist among these sympatric Chromodoris species that may be candidate traits for character displacement. These characters would need to be re-measured in geographic areas where the studied Chromodoris species do not co-occur.  相似文献   

11.
    
Conflicting pressures on the evolution of wing morphology are exemplified within the avian genus Anthus , where different migratory and flight display behaviours might be expected to exert different effects on the evolution of wing morphology. A phylogenetically controlled study of wing shape in relation to migratory distance and flight display suggests that migration has a larger impact on wing morphology than does flight display, despite the fact that flight display is generally the more heavily used flight-type. Correlations between single measures of morphology and migration were found only in males, although principal components analysis suggests that overall wing shape is correlated with migratory distance in both sexes. With regard to flight display, males, but not females, show a positive relationship between flight display type and the length of a flight feather that is highly elongated relative to other flight feathers. This exceptionally long flight feather is also found in other genera that perform flight displays.  相似文献   

12.
Summary. Some insects can develop immune resistance to koinobiont parasitoids. Reciprocally, adaptation to host immunology is critical for parasitoid success. Phylogenetic inertia and correlations between virulence against different hosts can act as constraints preventing these adaptations. Insights on these constraints may be obtained from the analysis of patterns of variations in the interactions at the species or genus level. Multivariate phylogenetic comparative methods were applied to virulence traits of 13 parasitoid strains of Leptopilina spp. (Hymenoptera: Figitidae) on five host strains of the Drosophila melanogaster species subgroup (Diptera Drosophilidae). Independent contrasts of virulence were calculated and principal component analysis (PCA) was performed on the independent contrasts to estimate the dimensionality of the interactions. Most of the variation of virulence was associated with the first component of the PCA (62.2%). But a significant proportion was explained by the second and third components, suggesting specific interactions. Strain–strain reciprocal specificity was observed in several pairs of host–parasitoid species. Significant phylogenetic inertia was observed on parasitoid virulence, but only at the genus level and only against hosts of intermediate resistance (phylogenetic R2 between 0.62 and 0.85). Some parts of the interaction matrix exhibited specific interactions and others were fixed due to ancestral non-specific virulence (or avirulence). The results were interpreted viewing virulence as a threshold trait determined by underlying liability. When liability is far from the threshold, virulence is fixed. When liability is close to the threshold, virulence varies specifically and reciprocal adaptations can take place. These phylogenetic constraints may lead to a scenario of escape and radiation coevolution in the host–parasitoid system.  相似文献   

13.
Habitat use may lead to variation in diversity among evolutionary lineages because habitats differ in the variety of ways they allow for species to make a living. Here, we show that structural habitats contribute to differential diversification of limb and body form in dragon lizards (Agamidae). Based on phylogenetic analysis and ancestral state reconstructions for 90 species, we find that multiple lineages have independently adopted each of four habitat use types: rock‐dwelling, terrestriality, semi‐arboreality and arboreality. Given these reconstructions, we fit models of evolution to species’ morphological trait values and find that rock‐dwelling and arboreality limit diversification relative to terrestriality and semi‐arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model‐averaged rate estimates are slowest for these habitat types. These results suggest that ground‐dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification.  相似文献   

14.
15.
    
The diversity of items consumed by modern didelphids, varying from mostly fruits in Caluromys Allen to mostly small vertebrates in Lutreolina O. Thomas, may cause changes in molar size and shape. We evaluated the morphometric variation of the first and third upper and lower molars of 16 genera of didelphid marsupials, with the aim of assessing the relationship between molar shape change, diet and phylogeny. We used a geometric morphometric approach to analyse how shape changes with diet. We mapped shape onto the phylogeny of the group to reconstruct ancestral states and analyse the evolution of molar shape. Finally, we statistically estimated the effect of size, diet and phylogeny on molar shape. All the analyses indicated little correlation between diet and molar shape and a strong correlation between the position of each genus on the phylogeny and molar shape. We believe that the wide ecological niche used by most of the groups (at least regarding diet) makes the evolutionary changes not strong enough to override pre‐existing differences that occur among clades, and the absence of highly diet‐specialized species (e.g. hypercarnivory or obligate folivory) causes the need for retaining a molar shape that can be useful to process different kinds of food items. © 2014 The Linnean Society of London  相似文献   

16.
    
Sexual selection can increase morphological diversity within and among species. Little is known regarding how interspecific variation produced through sexual selection affects other functional systems. Here, we examine how morphological diversity resulting from sexual selection impacts aerobic locomotor performance. Using Xiphophorus (swordtail fish) and their close relatives (N = 19 species), we examined whether the evolution of a longer sexually selected sword affects critical swimming speed. We also examined the effect of other suborganismal, physiological, and morphological traits on critical swimming speed, as well as their relationship with sword length. In correlation analyses, we found no significant relationship between sword length and critical swimming speed. Unexpectedly, we found that critical swimming speed was higher in species with longer swords, after controlling for body size in multiple regression analyses. We also found several suborganismal and morphological predictors of critical swimming speed, as well as a significant negative relationship between sword length and heart and gill mass. Our results suggest that interspecific variation in sword length is not costly for this aspect of swimming performance, but further studies should examine potential costs for other types of locomotion and other components of Darwinian fitness (e.g., survivorship, life span).  相似文献   

17.
    
Recently, heterogeneity of the environment has been suggested as an important player in the evolution of life span variation. Established ageing theories propose that life span variation is the result of coevolution with other traits, such as stress resistance. This study aimed to compare these alternative hypotheses by examining the relationship between four environmental variables and different types of stress resistance traits with life span in 13 Drosophila species originating from tropical, subtropical and temperate environments (ecotypes). Average life span was found to differ significantly both between species and sexes, but only male life span correlated with the environment and cold resistance. While controlling for phylogeny, the environmental variable precipitation seasonality and resistance against cold‐induced stress explained most variation in male life span. Furthermore, male life span varied between species in a manner represented by environmental variables linked to the different ecotypes, such that tropical species lived longer and were less cold resistant. The current results suggest that general mechanisms underlying stress resistance and life span are unlikely. In addition, our results point to the environment independently shaping variation in life span and cold resistance rather than genetic interactions.  相似文献   

18.
Fish life-history patterns were evaluated in relation to the trilateral continuum model by analyzing data from 25 species inhabiting European freshwaters. Multivariate tests identified a trend between later-maturing fishes with higher fecundity, larger size, and few spawning bouts per year and the opposite suite of traits with small fishes. A second trend contrasted fishes having parental care, smaller eggs, and longer breeding seasons against fishes with the opposite suite of traits. As a result, two extreme life-history patterns could be identified among European freshwater fish species: opportunistic and periodic. Nevertheless, intermediate patterns were also present. A true equilibrium life-history pattern was not represented among 25 fish species from European freshwaters. The high concordance of basic life-history patterns among distantly related taxa is probably caused by some universal trade-offs among life-history variables. As a consequence, only a limited life-history patterns may be recognizable among fish species, independently of the origin of fish communities.  相似文献   

19.
  总被引:1,自引:0,他引:1  
The Cape Region (here treated as the winter rainfall region of southern Africa, thus including fynbos, renosterveld and succulent karoo vegetation) is the world's foremost centre of geophyte diversity. Some 2100 species in 20 families have been recorded from this area, 84% of them endemic. The most important families, with more than a hundred geophyte species each, are Iridaceae, Oxalidaceae, Hyacinthaceae, Orchidaceae, Amaryllidaceae and Asphodelaceae. Although southern Africa does not appear to have been the main diversification centre for the plant orders with highest geophyte representation (Asparagales and Liliales), it represents an active centre of transition to geophytism, such transitions having occurred independently in numerous plant groups, often followed by rapid speciation. Several Cape geophyte groups have consequently expanded across Africa to the Mediterranean Basin, and possibly to other winter rainfall regions. Remarkably high local species diversity in renosterveld vegetation, even in relatively homogeneous environments, suggests that pollinator specificity and phenology play an important role in niche partitioning. However, character diversity is also high in storage organs and leaves, and this could account for the high species diversity values recorded at larger spatial scales, especially across environmental gradients. Long-term climatic stability, combined with topoclimatic and edaphic diversity and regular fire occurrence, is likely to be responsible for the remarkable geophyte diversity of the Cape, as compared to other mediterranean-climate regions.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 27–43.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号