首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This mini‐review describes the recent developments in quantum dots‐based nanoprobes in liquid‐phase chemiluminescence (CL) analysis. In the referenced reports, multiple quantum dots (QDs) were adopted as final emission species either after direct oxidation reactions (direct CL) or after chemiluminescence resonance energy transfer (indirect CL). This review does not include papers in which QDs have been used as enhancers, catalysts, carriers or quenchers in chemiluminescence systems. A brief overview on the CL mechanisms of various QDs‐based nanoprobes and their analytical applications over the last decade is given, followed by comments on the future challenges and prospects in this field.  相似文献   

2.
S,N co‐doped carbon quantum dots (N,S‐CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV–Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S‐CQDs can enhance the chemiluminescence intensity of a luminol–H2O2 system. The possible mechanism of the luminol–H2O2–(N,S‐CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol–H2O2–N,S‐CQDs system. So, a novel flow‐injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5–50 μg ml?1 and a detection limit of 0.12 μg ml?1. The method shows promising application prospects.  相似文献   

3.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Here, a simple and portable paper-based analytical device (PAD) based on the inherent capability of carbon quantum dots (CQDs) to serve as a great emitter for the bis(2,4,6-trichlorophenyl)oxalate (TCPO)–hydrogen peroxide (H₂O₂) chemiluminescence (CL) reaction is introduced for the detection of harmful mercury ions (Hg2+). The energy is transferred from the unstable reaction intermediate (1,2-dioxetanedione) to CQDs, as acceptors, and an intensive orange-red CL emission is generated at ~600 nm, which is equal to the fluorescence emission wavelength of CQDs. The analytical applicability of this system was examined for the determination of Hg2+. It was observed that Hg2+ could significantly quench the produced emission, which can be attributed to the formation of a stable and nonluminescent Hg2+–CQDs complex. Accordingly, a simple and rapid PAD was established for monitoring Hg2+, with a limit of detection of 0.04 μg ml−1. No interfering effect on the signal was found from other examined cations, indicating the acceptable specificity of the method. The designed assay was appropriately utilized to detect Hg2+ ions in cosmetic samples with high efficiency. It was characterized by its low cost, ease of use, and was facile but accurate and high selective for the detection of Hg2+ ions. In addition, the portability of this probe makes it suitable for on-site screening purposes.  相似文献   

5.
In this study, a sensitive and simple flow‐injection chemiluminescence (CL) method was developed for the quantitative analysis of haemoglobin. The method is based on the ability of haemoglobin to enhance the CL signal generated by a H2O2–K4Fe(CN)6–fluorescein alkaline system enhanced by CdTe quantum dots. Under the optimized conditions, haemoglobin can be detected in concentration range 7.35 × 10–9–2.5 × 10–6 mol/L, with a detection limit (3σ) of 1.8 × 10–9 mol/L and a relative standard deviation (RSD; for 5 × 10–7 mol/L haemoglobin) of 2.06% (n = 11). The present CL method was successfully applied for the determination of haemoglobin in three kinds of blood samples taken from an infant, an adult man, an adult woman and two reference samples. Compared with previous reports, the CL method described in this work is simple and rapid, with high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   

7.
In this article, a simple, effective chemiluminescence (CL) method for the detection of methylparaben (MP) in cosmetic samples was developed based on an IO4?–H2O2–carbon nitrogen quantum dots (CNQDs) system without a separation process. The results indicated that the redox reaction between periodate and hydrogen peroxide released hydroxide radicals and superoxide radical anions in the presence of bicarbonate. These two radicals were responsible for the formation of excited luminophor CNQD* with a maximum wavelength at 480 nm. Due to the competitive reaction with hydroxide radicals, CL intensity was markedly diminished in the presence of MP. The relative standard deviation in the intraday assay was below 5.5% (n = 9), and the detection limit was as low as 0.50 μmol/L. The proposed method allowed for the successful, selective determination of MP in cosmetics.  相似文献   

8.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and highly sensitive chemiluminescence (CL) method is reported for the determination of naphazoline hydrochloride (NH). It was found that the weak CL from the reaction of luminol and KIO4 in an alkaline medium could be highly amplified by cysteine‐capped cadmium telluride quantum dots (QDs) and the enhanced CL was effectively quenched by NH and this finding was utilized as a basis for the determination of NH. The QDs were synthesized in aqueous medium and characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐vis and photoluminescence spectroscopy. A possible mechanism was proposed for the CL system based on radical identification experiments, along with CL spectrum of the system. The experimental parameters were optimized by the reliable response surface methodology (RSM). Under the optimized experimental conditions, the proposed method allowed the determination of NH over the range of 5.0 × 10‐10–2.0 × 10‐7 mol/L (r2 = 0.9993, n = 10). The precision (RSD%) of the method, obtained from five replicate determinations of 2.0 and 150 nmol/L NH, was found to be 1.0% and 1.3%, respectively. The method was successfully applied to the determination of NH in pharmaceutical formulations and human urine and serum samples with results corroborated with the aid of those obtained from a standard method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)–permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12–300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A simple one‐step thermal treatment to prepare strong fluorescent sulfur and nitrogen co‐doped graphene quantum dots (SN‐GQD) using citric acid and l ‐cysteine as precursors was developed. The ultra‐weak chemiluminescence (CL) from the reaction of hydrogen peroxide (H2O2) and periodate (IO4?) was significantly enhanced by SN‐GQD in acidic medium. The enhanced CL was induced by excited‐state SN‐GQD (SN‐GQD*), which was produced from the transfer energy of (O2)2* and 1O2 to SN‐GQD and recombination of oxidant‐injected holes and electrons in SN‐GQD. In the presence of tryptophan (Trp), the CL intensity of the SN‐GQD–H2O2–KIO4 system was greatly diminished. This finding was used to design a novel method for determination of Trp in the linear range 0.6–20.0 μM, with a limit of detection (LOD) of 58.0 nM. Furthermore, Hg2+ was detectable in the range 0.1–9.0 μM with a LOD of 64.0 nM, based on its marked enhancement of the SN‐GQD–H2O2–KIO4 CL system. The proposed method was successfully applied to detect Trp in milk and human plasma samples and Hg2+ in drinking water samples, with recoveries in the range 95.7–107.0%.  相似文献   

12.
A ‘turn‐on’ fluorescence method for detection of hydrogen peroxide (H2O2) in marine food samples is presented in this article. Using this method, a carbon dots (CDs)–MnO2 probe was formed in which fluorescence intensity (FI) of CDs was quenched through fluorescence resonance energy transfer by addition of MnO2 nanosheets. When H2O2 was added into the CDs–MnO2 solution, the MnO2 nanosheets formed Mn2+ ions due to a redox reaction between H2O2 and MnO2 nanosheets, and CD FI was recovered. Under optimized conditions, the detection limit for H2O2 was 0.87 μM, and analytical linear range was 4–100 μM. Furthermore, this developed fluorescence sensing system was successfully used with satisfactory results to determine trace H2O2 content in marine food samples.  相似文献   

13.
This review will discuss various approaches and techniques in which analysis using microfluidics–chemiluminescence systems (MF–CL) has been reported. A variety of applications is examined, including environmental, pharmaceutical, biological, food and herbal analysis. Reported uses of CL reagents, sample introduction techniques, sample pretreatment methods, CL signal enhancement and detection systems are discussed. A hydrodynamic pumping system is predominately used for these applications. However, several reports are available in which electro‐osmotic (EO) pumping has been implemented. Various sample pretreatment methods have been used, including liquid–liquid extraction, solid‐phase extraction and molecularly imprinted polymers. A wide range of innovative techniques has been reported for CL signal enhancement. Most of these techniques are based on enhancement of the mixing process in the microfluidics channels, which leads to enhancement of the CL signal. However, other techniques are also reported, such as mirror reaction, liquid core waveguide, on‐line pre‐derivatization and the use of an opaque white chip with a thin transparent seal. Photodetectors are the most commonly used detectors; however, other detection systems have also been used, including integrated electrochemiluminescence (ECL) and organic photodiodes (OPDs). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, carbon dots (CDs) with a high quantum yield (22.3%) were easily prepared by hydrothermal pyrolysis of acid fuchsin 6B and hydrogen peroxide at 180°C for 10 h. The resultant CDs possess a narrow size distribution in the range of 2.6 to 3.2 nm and emit blue fluorescence. Interestingly, the absorption band of metronidazole (MTZ) centered at 318 nm can complementary overlap with the excitation band of the as‐prepared CDs centered at 320 nm, resulting in an inner filter effect (IFE) in high efficiency. In fact, the fluorescence quenching of the CDs depends on the concentration of MTZ. Therefore, a simple method for the detection of MTZ can be established using the CDs‐based sensor via the IFE. The linear range of the proposed method was 0–10 μg mL?1 with the limit of detection as low as 0.257 μg mL?1. This CDs‐based sensor had been applied for the detection of MTZ in honey and MTZ tablets with the recoveries in the range of 98.0% to 105.1% and 95.7% to 106.5%, respectively. Therefore, the as‐prepared CDs have a potential to be developed as a MTZ sensor with high selectivity, sensitivity and accuracy.  相似文献   

15.
The state of the art in flow‐chemiluminescence (flow‐CL) technique for automated pharmaceutical analysis is reviewed. Flow‐CL approaches have become powerful and promising tools for pharmaceutical screening in recent years due to their simplicity, low cost and high sensitivity. Because of these advantages, these methods have been widely used for pharmaceutical analysis in recent years. The literature reviewed covers papers of analytical interest that appeared between 2007 and mid‐2012 and have been divided into several sections based on fundamental types of CL systems employed. Furthermore, entries have been summarized alphabetically in tabular form giving details of analytical figures of merit of the methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Dudu Wu  Zhi Chen 《Luminescence》2014,29(4):307-313
Water‐soluble ZnS quantum dots (QDs) modified by mercaptoacetic acid (MPA) were used to determinate quercetin in aqueous solutions by a fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnS QDs could be quenched by quercetin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25°C. Under the optimal conditions, the detection limit of quercetin was 5.71 × 10‐7 mol/L. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by the quenching rate constant Kq (1.14 × 1013 L/mol/s). Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Electrogenerated chemiluminescence (ECL) of thiol‐capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA‐protected graphene (P‐GR) film that were used for the sensitive detection of H2O2. When the potential was cycled between 0 and ?2.3 V, two ECL peaks were observed at ?1.1 (ECL‐1) and ?1.4 V (ECL‐2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron‐transfer reaction between individual electrochemically‐reduced CdTe nanocrystal species and oxidant coreactants (H2O2 or reduced dissolved oxygen) led to the production of ECL‐1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL‐2 signal. ECL‐1 showed higher sensitivity for the detection of H2O2 concentrations than that of ECL‐2. Further, P‐GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2O2 between 1.0 × 10?5 and 2.0 x 10‐7 mol L?1 with a detection limit of 9.8 x 10?8 mol L?1. The P‐GR thin‐film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long‐term stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We report for the first time that the sensitivity of the luminol–hypochlorite chemiluminescence (CL) reaction was enhanced approximately 10 times by the addition of phloxine B. The maximum wavelength of CL emission shifted from 431 to 595 nm in the absence and presence, respectively, of phloxine B, suggesting that an efficient chemiluminescence resonance energy transfer occurred between a luminol donor and a phloxine B acceptor in the luminol–hypochlorite–phloxine B system. Based on this observation, a simple, rapid and sensitive microflow injection CL method, using a microchip with spiral channel configurations, was developed for the determination of hypochlorite. Under optimized conditions, a linear calibration curve (R2 = 0.9944) over the range 0.1–10.0 µmol/L was obtained, with a detection limit of 0.025 µmol/L (S:N = 3). The relative standard deviation (RSD) was found to be 4.2% (n = 10) for 2.5 µmol/L hypochlorite. The sample consumption was only 2 μL, with a sample throughput of 90/h. The method has been used for determining trace amounts of hypochlorite in water samples with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Chunchuan Gu 《Luminescence》2017,32(7):1186-1191
The development of advanced methods for accurately monitoring cell apoptosis has extensive significance in the diagnostic and pharmaceutical fields. In this study, we developed a rapid, sensitive and selective approach for the detection of cell apoptosis by combining the site‐specific recognition and cleavage of the DEVD–peptide with quantum dots (QDs)‐based fluorescence resonance energy transfer (FRET). Firstly, biotin‐peptide was conjugated on the surface of AuNPs to form AuNPs‐pep through the formation of an Au‐S bond. Then, AuNPs–pep–QDs nanoprobe was obtained through the connection between AuNPs–pep and QDs. FRET is on and the fluorescence of QDs is quenched at this point. The evidence of UV–vis spectra, transmission electron microscopy (TEM), and Fourier transform infrared (FT‐IR) spectroscopy revealed that the connection was successful. Upon the addition of apoptosis cell lysis solution, peptide was cleaved by caspase‐3, and AuNPs was dissociated from the QDs. At this time, FRET is off, and thus the QDs fluorescence was recovered. The experimental conditions were optimized in terms of ratio of peptide to AuNPs, buffer solution, and the temperature of conjugation and enzyme reaction. The biosensor was successfully applied to distinguishing apoptosis cells and normal cells within 2 h. This study demonstrated that the biosensor could be utilized to evaluate anticancer drugs.  相似文献   

20.
Guowei Wang  Fang Zhao  Ying Gao 《Luminescence》2014,29(8):1008-1013
A novel post‐chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N‐chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10‐10 to 3.0 × 10‐6 g/mL with a detection limit of 2.3 × 10‐10 g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10‐8 g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号