首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory. Vip3A, secreted by Bacillus thuringiensis, is another potential toxin against H. armigera. Previous reports showed that activated Vip3A performs its function by inserting into the midgut brush border membrane vesicles (BBMV) of susceptible insects. To further investigate the binding of Vip3A to BBMV of H. armigera, the full-length Vip3Aa10 toxin expressed in Escherichia coli was digested by trypsin or midgut juice extract, respectively. Among the fragments of digested Vip3Aa10, only a 62 kDa fragment (Vip3Aa10-T) exhibited binding to BBMV of H. armigera and has insecticidal activity. Moreover, this interaction was specific and was not affected by the presence of Cry1Ab toxin. Binding of Vip3Aa10-T to BBMV resulted in the formation of an ion channel. Unlike Cry1A toxins, Vip3Aa10-T was just slightly associated with lipid rafts of BBMV. These data suggest that although activated Vip3Aa10 specifically interacts with BBMV of H. armigera and forms an ion channel, the mode of action of it may be different from that of Cry1A toxins.  相似文献   

2.
Bacillus thuringiensis (Bt) is a commonly used bioagent in insect pest control. Its toxicity is largely due to the crystalline (Cry) proteins that act selectively on insects and/or nematodes. Some insects, such as the stored product pest Tribolium castaneum, are relatively resistant to any natural Cry toxin. In attempt to find a Cry protein sufficiently toxic to this beetle, we prepared 18 recombinant modifications of Cry3A protoxins and tested them on the penultimate instar larvae of T. castaneum. Larvae were transferred to diet containing 0, 14, 28, 56 or 112 ppm of a Cry protein and their body growth and mortality were evaluated after 10 days. Cumulative mortality reached 25%, and the growth was nearly halted with 112 ppm of the natural Cry3Aa. The mortality was lower and the body weight increased by 15% of the control value in larvae receiving the recombinant Cry3Aa. Several structural derivatives of Cry3A also caused significant growth reduction and enhanced mortality. As both the natural and the recombinant Cry3Aa were more active than any of the tested Cry3A derivatives, we conclude that structural modifications of Cry3Aa are unlikely to increase toxicity to T. castaneum.  相似文献   

3.
Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested.  相似文献   

4.
Bacillus thuringiensis vegetative insecticidal proteins (Vip3A) have been recently introduced in important crops as a strategy to delay the emerging resistance to the existing Cry toxins. The mode of action of Vip3A proteins has been studied in Spodoptera frugiperda with the aim of characterizing their binding to the insect midgut. Immunofluorescence histological localization of Vip3Aa in the midgut of intoxicated larvae showed that Vip3Aa bound to the brush border membrane along the entire apical surface. The presence of fluorescence in the cytoplasm of epithelial cells seems to suggest internalization of Vip3Aa or a fragment of it. Successful radiolabeling and optimization of the binding protocol for the 125I-Vip3Aa to S. frugiperda brush border membrane vesicles (BBMV) allowed the determination of binding parameters of Vip3A proteins for the first time. Heterologous competition using Vip3Ad, Vip3Ae, and Vip3Af as competitor proteins showed that they share the same binding site with Vip3Aa. In contrast, when using Cry1Ab and Cry1Ac as competitors, no competitive binding was observed, which makes them appropriate candidates to be used in combination with Vip3A proteins in transgenic crops.  相似文献   

5.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

6.
An J  Gao Y  Wu K  Gould F  Gao J  Shen Z  Lei C 《Journal of economic entomology》2010,103(6):2169-2173
Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.  相似文献   

7.
He J  Wang J  Yin W  Shao X  Zheng H  Li M  Zhao Y  Sun M  Wang S  Yu Z 《Journal of bacteriology》2011,193(13):3407-3408
Bacillus thuringiensis has been widely used as an agricultural biopesticide for a long time. As a producing strain, B. thuringiensis subsp. chinensis strain CT-43 is highly toxic to lepidopterous and dipterous insects. It can form various parasporal crystals consisting of Cry1Aa3, Cry1Ba1, Cry1Ia14, Cry2Aa9, and Cry2Ab1. During fermentation, it simultaneously generates vegetative insecticidal protein Vip3Aa10 and the insecticidal nucleotide analogue thuringiensin. Here, we report the finished, annotated genome sequence of B. thuringiensis strain CT-43.  相似文献   

8.
张彦  梁革梅  高珍 《昆虫知识》2012,49(4):853-861
为了明确Vip3Aa的作用机制,为其作为新毒素策略重要蛋白的应用提供理论依据,本文比较了Vip3Aa、Cry1Ac对棉铃虫Helicoverpa armigera(Hübner)主要蛋白酶、解毒酶、APN活性的影响,并研究了Vip3Aa和Cry1Ac共同使用对几种酶活力的作用。室内生测结果表明,Vip3Aa对棉铃虫的杀虫效果低于Cry1Ac,但Vip3Aa对棉铃虫幼虫生长有明显的抑制作用。取食含Cry1Ac、Vip3Aa或Cry1Ac+Vip3Aa饲料的棉铃虫,总蛋白酶和类胰凝乳蛋白酶活性很快升高;但经Cry1Ac处理12 h后这2种酶活性与对照差异不显著或低于对照,而取食含Vip3Aa饲料的棉铃虫酶活力显著高于对照的时间明显延长,而且类胰蛋白酶活性也显著高于对照;表明Cry1Ac降解速度比Vip3Aa快,可能是由于降解2种蛋白参与的酶系存在差异,同时Cry1Ac+Vip3Aa混用可以延长蛋白被酶解的时间。谷胱甘肽S-转移酶和α-乙酸萘酯酶活性在棉铃虫取食含Vip3Aa、Cry1Ac或Cry1Ac+Vip3Aa蛋白的饲料后活性升高,说明这2种酶可能参与了对Cry1Ac、Vip3Aa的解毒作用。但Cry1Ac、Vip3Aa对氨肽酶活性影响不大,可能在毒蛋白发挥毒性的过程中与氨肽酶活力变化无关。  相似文献   

9.
An exposure bioassay was established for green lacewing Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) adults using a suitable artificial diet and honey–water solution (20%) to assess the toxicity of trypsinized Cry1Fa and Vip3Aa. Lethal and sub-lethal life table parameters were unaffected after C. pallens adults were given honey–water solutions containing Cry1Fa and Vip3Aa (50 µg/ml) and an artificial diet. In contrast, life table parameters of C. pallens adults were significantly affected when boric acid was mixed with the honey–water solution as a positive control. The uptake, temporal stability and bioactivity of Cry1Fa and Vip3Aa before and after C. pallens access to honey–water were confirmed using double antibody sandwich enzyme-linked immunosorbent assays and a bioactivity verification bioassay. The results prove that trypsinized Cry1Fa and Vip3Aa are safe for C. pallens adults, thus it is speculated that transgenic crops expressing Cry1Fa and Vip3Aa have no detrimental effects on lacewings and are compatible with biological control programs. This study describes a robust experimental design for evaluating the potential toxicity of alkaline gut-activated Bacillus thuringiensis (Bt) proteins on C. pallens adults which can be used to determine the potential toxicity of other Bt proteins on this species.  相似文献   

10.
Dietary exposure studies are initial steps in environmental risk assessments of genetically engineered plants on non‐target organisms. These studies are conducted in the laboratory where surrogate species are exposed to purified and biologically active insecticidal compounds at higher concentrations than those expected to occur in transgenic crops foliage. Thus, dietary exposure (early tier) tests provide robust data needed to make general conclusions about the susceptibility of the surrogate species to the test substance. For this, we developed suitable artificial diet and used it to establish a dietary exposure test for assessing the toxicity of midgut‐active insecticidal compounds to the larvae of the Asian ladybird beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Using boric acid as a model compound, we validated the bioassay established for H. axyridis larvae. An artificial diet containing boric acid which negatively affected survival, development and adult weights was offered to larvae and indicated that the bioassay was able to detect toxic effects of insecticidal substances incorporated in diets. Using this dietary exposure test, environmental risk assessment of Cry1Ac, Cry2Ab, Cry1Ca, Cry1F and the non‐Cry protein Vip3Aa was evaluated by analysing pupation rates, adult emergence rates, 7‐day larval weights, and freshly emerged male and female weights among the toxin treatments and a pure artificial diet. These life‐table parameters did not vary among artificial diets containing 200 μg/g Bt proteins or pure artificial diet. In contrast, boric acid adversely affected all life‐table parameters. Thus on these bases, we concluded H. axyridis larvae are not sensitive to these Bt proteins expressed in genetically engineered crops.  相似文献   

11.
Biosafety of a genetically modified crop is required to be assessed prior to its commercialization. For this, a suitable artificial diet was developed and used to establish a dietary exposure test for assessing the toxicity of midgut-active Bt insecticidal proteins on Chrysopa pallens (Rambur). Subsequently, this dietary exposure test was used to evaluate the toxicity of the proteins Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, and Vip3Aa on C. pallens larvae. Temporal stability, bioactivity, and the intake of the insecticidal proteins were confirmed by enzyme-linked immunosorbent assay and a sensitive-insect bioassay. The life history characteristics, such as survival, pupation, adult emergence, 7-day larval weight, larval developmental time, and emerged male and female fresh weights remained unaffected, when C. pallens were fed the pure artificial diet (negative control) and the artificial diets containing 200 μg/g of each purified protein: Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, or Vip3Aa. On the contrary, all of the life history characteristics of C. pallens larvae were adversely affected when fed artificial diet containing boric acid (positive control). The results demonstrate that diets containing the tested concentrations of Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, and Vip3Aa have null effects on C. pallens larvae. The outcome indicates that genetically modified crops expressing the tested Bt proteins are safe for the lacewing, C. pallens.  相似文献   

12.
为了进一步明确Vip3Aa的作用机制, 利用透射电镜观察了棉铃虫4龄幼虫取食含Vip3Aa蛋白饲料后中肠杯状细胞的病理变化, 并比较了其病变与取食含Cry1Ac饲料后棉铃虫组织病变的差异。取食含Vip3Aa饲料后, 棉铃虫幼虫的中肠杯状细胞逐渐发生病变, 主要表现为: 微绒毛肿胀、 脱落; 细胞核核膜界限不清晰, 染色质分布不均匀; 线粒体变形、 数量减少, 内脊不清晰; 内质网杂乱不规则、 数量减少。与取食Cry1Ac的棉铃虫相比, 取食Vip3Aa的棉铃虫中肠杯状细胞发生病变较为缓慢, 在取食12 h后才发现明显病变, 随着取食时间的增加病变越来越明显; 而取食Cry1Ac的棉铃虫2 h后中肠杯状细胞就出现明显病变。本研究可为Vip3Aa作为新毒素策略的重要蛋白在棉铃虫Helicoverpa armigera综合防治中更好地发挥作用提供理论依据。  相似文献   

13.
Insecticides based on crystalline toxins of Bacillus thuringiensis are very good biological plant protection products. However, the spectrum of activity of some toxins is narrow or resistance among insects has been developed. We tested the insecticidal activity of crystals of the B. thuringiensis MPU B9 strain alone and supplemented with Vip3Aa proteins against important pests: Spodoptera exigua Hübner (Lepidoptera: Noctuidae), Cydia pomonella L. (Lepidoptera: Tortricidae) and Dendrolimus pini L. (Lepidoptera: Lasiocampidae). The Cry toxins were more active for D. pini but less active against S. exigua and C. pomonella than Vip3Aa. Supplementation of Cry toxins by small amounts of vegetative insecticidal proteins demonstrated synergistic effect and significantly enhanced the toxicity of the insecticide. The results indicate the utility of Cry and Vip3Aa toxins mixtures to control populations of crops and forests insect pests.  相似文献   

14.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with 125I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [Kcom] = 1.1 nM) for 125I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for 125I-Cry1Ab binding sites, though the Kcom values ranged from 179 to 304 nM. Cry1Ab competed for 125I-Cry1Ac binding sites (Kcom = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the 125I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

15.
Bacillus thuringiensis ssp. israelensis (Bti) produces four Cry toxins (Cry4Aa, Cry4Ba, Cry10Aa and Cry11Aa), and two Cyt proteins (Cyt1Aa and Cyt2Ba), toxic to mosquito‐larvae of the genus Aedes, Anopheles and Culex, important human disease vectors that transmit dengue virus, malaria and filarial parasites respectively. Previous work showed that Bti is highly toxic to Anopheles albimanus, the main vector for transmission of malaria in Mexico. In this work, we analysed the toxicity of isolated Cry proteins of Bti and identified an An. albimanus midgut protein as a putative Cry4Ba and Cry11Aa receptor molecule. Biossays showed that Cry4Ba and Cry11Aa of Bti are toxic to An. albimanus larvae. Ligand blot assays indicated that a 70 kDa glycosylphosphatidylinositol‐anchored protein present in midgut brush border membrane vesicles of An. albimanus interacts with Cry4Ba and Cry11Aa toxins. This protein was identified as an α‐amylase by mass spectrometry and enzymatic activity assays. The cDNA that codes for the α‐amylase was cloned by means of 5′‐ and 3′‐RACE experiments. Recombinant α‐amylase expressed in Escherichia coli specifically binds Cry4Ba and Cry11Aa toxins.  相似文献   

16.
17.
The bacterium Bacillus thuringiensis produces, at the vegetative stage of its growth, Vip3A proteins with activity against a broad spectrum of lepidopteran insects. The Egyptian cotton leaf worm (Spodoptera littoralis) is an important agricultural pest that is susceptible to the Vip3Aa16 protein of Bacillus thuringiensis kurstaki strain BUPM95. The midgut histopathology of Vip3Aa fed larvae showed vacuolization of the cytoplasm, brush border membrane destruction, vesicle formation in the apical region and cellular disintegration. Biotinylated Vip3Aa toxin bound proteins of 55- and 100-kDa on blots of S. littoralis brush border membrane preparations. These binding proteins differ in molecular size from those recognized by Cry1C, one of the very few Cry proteins active against the polyphagous S. littoralis. This result supports the use of Vip3Aa16 proteins as insecticidal agent, especially in case of Cry-resistance management.  相似文献   

18.
Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt‐resistant insects on Bt and non‐Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt‐resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt‐resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non‐Bt cotton and on transgenic Bt cotton leaves expressing a single‐toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R0) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4‐day asynchrony of adult emergence between the susceptible T. ni grown on non‐Bt cotton leaves and the dual‐toxin‐resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants.  相似文献   

19.
Expression of the Cry2Aa2 protein was targeted specifically to the green tissues of transgenic tobacco Nicotiana tabacum cv. Xanthi plants. This deployment was achieved by using the promoter region of the gene encoding the Solanum tuberosum leaf and stem specific (ST-LS1) protein. The accumulated levels of toxin in the leaves were found to be effective in achieving 100 mortality of Heliothis virescens larvae. The levels of Cry2Aa2 expression in the leaves of these transgenic plants were up to 0.21 of the total soluble proteins. Bioassays with R1 transgenic plants indicated the inheritance of cry2Aa2 in the progeny plants. Tissue-specific expression of the Bt toxin in transgenic plants may help in controlling the potential occurrence of insect resistance by limiting the amount of toxin to only predated tissues. The results reported here validate the use of the ST-LS1 gene promoter for a targeted expression of Bt toxins in green tissues of plants.  相似文献   

20.
Wide planting of transgenic Bt cotton in China since 1997 to control cotton bollworm (Helicoverpa armigera) has increased yields and decreased insecticide use, but the evolution of resistance to Bt cotton by H. armigera remains a challenge. Toward developing a new generation of insect-resistant transgenic crops, a chimeric protein of Vip3Aa1 and Vip3Ac1, named Vip3AcAa, having a broader insecticidal spectrum, was specifically created previously in our laboratory. In this study, we investigated cross resistance and interactions between Vip3AcAa and Cry1Ac with three H. armigera strains, one that is susceptible and two that are Cry1Ac-resistant, to determine if Vip3AcAa is a good candidate for development the pyramid cotton with Cry1Ac toxin. Our results showed that evolution of insect resistance to Cry1Ac toxin did not influence the sensitivity of Cry1Ac-resistant strains to Vip3AcAa. For the strains examined, observed mortality was equivalent to the expected mortality for all the combinations of Vip3AcAa and Cry1Ac tested, reflecting independent activity between these two toxins. When this chimeric vip3AcAa gene and the cry1Ac gene were introduced into cotton, mortality rates of Cry1Ac resistant H. armigera larvae strains that fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and cotton producing only Cry1Ac. These results suggest that the Vip3AcAa protein is an excellent option for a “pyramid” strategy for pest resistance management in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号