首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) acts in microorganisms as an osmotic counterweight against halostress and has attracted commercial attention as a protecting agent. Its production and application are restricted by the drawbacks of the discontinuous harvesting procedure involving salt shocks, which reduces volumetric yield, increases reactor corrosion, and complicates downstream processing. In order to synthesize ectoine continuously in less-aggressive media, we introduced the ectoine genes ectABC of the halophilic bacterium Chromohalobacter salexigens into an Escherichia coli strain using the expression vector pASK-IBA7. Under the control of a tet promoter, the transgenic E. coli synthesized 6 g liter−1 ectoine with a space-time yield of 40 mg liter−1 h−1, with the vast majority of the ectoine being excreted.  相似文献   

3.
4.
Gram-positive soil bacterium Corynebacterium glutamicum uses the compatible solutes glycine betaine, proline, and ectoine for protection against hyperosmotic shock. Osmoregulated glycine betaine carrier BetP and proline permease PutP have been previously characterized; we have identified and characterized two additional osmoregulated secondary transporters for compatible solutes in C. glutamicum, namely, the proline/ectoine carrier, ProP, and the ectoine/glycine betaine/proline carrier, EctP. A ΔbetP ΔputP ΔproP ΔectP mutant was unable to respond to hyperosmotic stress, indicating that no additional uptake system for these compatible solutes is present. Osmoregulated ProP consists of 504 residues and preferred proline (Km, 48 μM) to ectoine (Km, 132 μM). The proP gene could not be expressed from its own promoter in C. glutamicum; however, expression was observed in Escherichia coli. ProP belongs to the major facilitator superfamily, whereas EctP, together with the betaine carrier, BetP, is a member of a newly established subfamily of the sodium/solute symporter superfamily. The constitutively expressed ectP codes for a 615-residue transporter. EctP preferred ectoine (Km, 63 μM) to betaine (Km, 333 μM) and proline (Km, 1,200 μM). Its activity was regulated by the external osmolality. The related betaine transporter, BetP, could be activated directly by altering the membrane state with local anesthetics, but this was not the case for EctP. Furthermore, the onset of osmotic activation was virtually instantaneous for BetP, whereas it took about 10 s for EctP.  相似文献   

5.
As a halotolerant bacterial species, Brevibacterium epidermis DSM 20659 can grow at relatively high salinity, tolerating up to 2 m NaCl. It synthesizes ectoine and the intracellular content increases with the medium salinity, with a maximum of 0.14 g ectoine/g CDW at 1 m NaCl. Sugar-stressed cells do not synthesize ectoine. Ectoine synthesis is also affected by the presence of external osmolytes. Added betaine is taken up and completely replaced ectoine, while l-proline is only temporarily accumulated after which ectoine is synthesized. The strain can metabolize ectoine; l-glutamate is a better carbon source for ectoine synthesis than l-aspartate.  相似文献   

6.
Optically pure d ‐lactate production has received much attention for its critical role in high‐performance polylactic acid production. However, the current technology can hardly meet the comprehensive demand of industrialization on final titer, productivity, optical purity, and raw material costs. Here, an efficient d ‐lactate producer strain, Sporolactobacillus terrae (S. terrae) HKM‐1, is isolated for d ‐lactate production. The strain HKM‐1 shows extremely high d ‐lactate fermentative capability by using peanut meal, soybean meal, or corn steep liquor powder as a sole nitrogen source; the final titers (205.7 g L?1, 218.9 g L?1, and 193.9 g L?1, respectively) and productivities (5.56 g L?1 h?1, 5.34 g L?1 h?1, and 3.73 g L?1 h?1, respectively) of d ‐lactate reached the highest level ever reported. A comparative genomic analysis between S. terrae HKM‐1 and previously reported d ‐lactate high‐producing Sporolactobacillus inulinus (S. inulinus) CASD is conducted. The results show that many unrelated genetic features may contribute to the superior performance in d ‐lactate production of S. terrae HKM‐1. This d ‐lactate producer HKM‐1, along with its fermentation process, is promising for sustainable d ‐lactate production by using agro‐industrial wastes.  相似文献   

7.
8.
9.
Compatible solutes are key for the ability of halophilic bacteria to resist high osmotic stress. They have received wide attention from researchers for their excellent osmotic protection properties. Hydroxyectoine is a particularly important compatible solute, but its production by microbes faces several challenges, including low titer/yield, the presence of the byproduct ectoine, and the requirement of high salinity. Here, we aimed to metabolically engineer Escherichia coli to efficiently produce hydroxyectoine in the absence of osmotic stress without accumulating the byproduct ectoine. First, combinatorial optimization of the expression strength of key genes in the ectoine synthesis module and hydroxyectoine synthesis module was conducted. After optimization of the expression of these genes, 12.12 g/L hydroxyectoine and 0.24 g/L ectoine were obtained at 36 h in shake-flask fermentation with the addition of the co-substrate α-ketoglutarate. Further optimization of the addition of α-ketoglutarate achieved the sole production of hydroxyectoine (i.e., no ectoine accumulation), indicating that the supply of α-ketoglutarate is critically important for sole hydroxyectoine production. Finally, quorum sensing-based auto-regulation of intracellular α-ketoglutarate pool was implemented as an alternative to α-ketoglutarate addition by coupling the expression of sucA with the esaI/esaR circuit, which led to 14.93 g/L hydroxyectoine with a unit cell yield of 1.678 g/g and no ectoine accumulation in the absence of osmotic stress. This is the highest reported titer of sole hydroxyectoine production under salinity-free fermentation to date.  相似文献   

10.
Using ectoine-excreting strain Halomonas salina DSM 5928T, we developed a new process for high-efficiency production of ectoine, which involved a combined process of batch fermentation by growing cells and production by resting cells. In the first stage, batch fermentation was carried out using growing cells under optimal fermentation conditions. The second stage was the production phase, in which ectoine was synthesized and excreted by phosphate-limited resting cells. Optimal conditions for synthesis and excretion of ectoine during batch fermentation in a 10 l fermentor were 0.5 mol l−1 NaCl and an initial monosodium glutamate concentration of 80 g l−1 respectively. The pH was adjusted to 7.0 and the temperature was maintained at 33°C. In phosphate-limited resting cells medium, monosodium glutamate and NaCl concentration was 200 g l−1 and 0.5 mol l−1, respectively, as well as pH was 7.0. The total concentration of ectoine produced was 14.86 g l−1, the productivity and yield of ectoine was 7.75 g l−1 day−1 and 0.14 g g−1, respectively, and the percentage of ectoine excreted was 79%. These levels of ectoine production and excretion are the highest reported to date.  相似文献   

11.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
13.
Streptomyces coelicolor A3(2) synthesizes ectoine and 5-hydroxyectoine upon the imposition of either salt (0.5 M NaCl) or heat stress (39°C). The cells produced the highest cellular levels of these compatible solutes when both stress conditions were simultaneously imposed. Protection against either severe salt (1.2 M NaCl) or heat stress (39°C) or a combination of both environmental cues could be accomplished by adding low concentrations (1 mM) of either ectoine or 5-hydroxyectoine to S. coelicolor A3(2) cultures. The best salt and heat stress protection was observed when a mixture of ectoine and 5-hydroxyectoine (0.5 mM each) was provided to the growth medium. Transport assays with radiolabeled ectoine demonstrated that uptake was triggered by either salt or heat stress. The most effective transport and accumulation of [14C]ectoine by S. coelicolor A3(2) were achieved when both environmental cues were simultaneously applied. Our results demonstrate that the accumulation of the compatible solutes ectoine and 5-hydroxyectoine allows S. coelicolor A3(2) to fend off the detrimental effects of both high salinity and high temperature on cell physiology. We also characterized the enzyme (EctD) required for the synthesis of 5-hydroxyectoine from ectoine, a hydroxylase of the superfamily of the non-heme-containing iron(II)- and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). The gene cluster (ectABCD) encoding the enzymes for ectoine and 5-hydroxyectoine biosynthesis can be found in the genome of S. coelicolor A3(2), Streptomyces avermitilis, Streptomyces griseus, Streptomyces scabiei, and Streptomyces chrysomallus, suggesting that these compatible solutes play an important role as stress protectants in the genus Streptomyces.  相似文献   

14.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Corynebacterium glutamicum is well known as an important industrial amino acid producer. For a few years, its ability to produce organic acids, under micro‐aerobic or anaerobic conditions was demonstrated. This study is focused on the identification of the culture parameters influencing the organic acids production and, in particular, the succinate production, by this bacterium. Corynebacterium glutamicum 2262, used throughout this study, was a wild‐type strain, which was not genetically designed for the production of succinate. The oxygenation level and the residual glucose concentration appeared as two critical parameters for the organic acids production. The maximal succinate concentration (4.9 g L?1) corresponded to the lower kLa value of 5 h?1. Above 5 h?1, a transient accumulation of the succinate was observed. Interestingly, the stop in the succinate production was concomitant with a lower threshold glucose concentration of 9 g L?1. Taking into account this threshold, a fed‐batch culture was performed to optimize the succinate production with C. glutamicum 2262. The results showed that this wild‐type strain was able to produce 93.6 g L?1 of succinate, which is one of the highest concentration reported in the literature.  相似文献   

16.
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Kms of 9.1 mM for l-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.Halotolerance is of considerable interest scientifically and from the perspective of wide application in fermentation industries and in agriculture. When eubacteria are exposed to hyperosmotic stress, they accumulate various low-molecular-weight organic compounds, the so-called “compatible solutes” such as polyols, amino acids, sugars, and betaines (79, 13, 19, 48), because maintenance of turgor pressure is a prerequisite for growth under the conditions of elevated external osmotic pressure. Since Galinski et al. (14) discovered 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) as a compatible solute in Ectothiorhodospira halochloris, an extremely halophilic phototrophic eubacterium, ectoine has been found to be distributed widely in nature, largely in moderately halophilic eubacteria (3, 11, 12, 26, 38, 50). In addition, ectoine has been investigated as a new excellent universal osmoprotectant in this decade, since incorporation of external ectoine under hyperosmotic stress has been observed to confer protection on various nonhalotolerant eubacteria (16, 21, 44).We previously isolated a moderately halophilic eubacterium, Halomonas elongata (31), from dry salty land in Thailand. We identified ectoine and γ-N-acetyl-α,γ-diaminobutyric acid (ADABA), which is one of the cleavage structures of ectoine, as osmotically responding compounds in the cells grown in a glucose-mineral medium containing NaCl in a concentration range of 3 to 15% (31). To understand the accumulation mechanism of the intracellular ectoine, characterization of enzymes involved in the biosynthesis of ectoine is indispensable. Therefore, we have focused on the biosynthetic enzyme of ectoine in this organism. We observed that radioactivity from [1-14C]aspartate was most efficiently incorporated into ectoine and that the signal intensity was enriched preferentially from [1-13C]acetate into the methyl carbon at position 2′ and from [2-13C]acetate into the methine carbon at position 2 of the ectoine skeleton, respectively, in 13C nuclear magnetic resonance (NMR) spectroscopy (22). From these findings, we also hypothesized the following pathway essentially similar to that described by Peters et al. (34): aspartic β-semialdehyde (ASA) is converted to 2,4-diaminobutyric acid (DABA) by transamination, and DABA is converted to ADABA by acetylation with acetyl coenzyme A (CoA), which in turn yields ectoine by circularization (Fig. (Fig.1).1). The three enzymes involved in this pathway are DABA aminotransferase, DABA acetyltransferase, and ectoine synthase in order of the reactions to ectoine. Peters et al. (34) detected the activity of the first and the second of the three steps by using crude extracts of E. halochloris and H. elongata. However, the characterization of these enzymes was limited; in particular, their responses to various salt concentrations remained unknown. Open in a separate windowFIG. 1Proposed biosynthetic pathway of ectoine in H. elongata OUT30018.In this study, we confirmed the biosynthetic pathway of ectoine by using purified enzymes in H. elongata OUT30018 and characterized the three enzymes involved in the conversion of ASA to ectoine for the first time.  相似文献   

17.
In this study, a hybrid system of response surface methodology followed by genetic algorithm has been adopted to optimize the production medium for L-glutamic acid fermentation with mixed cultures of Corynebacterium glutamicum and Pseudomonas reptilovora. The optimal combination of media components for maximal production of L-glutamic acid was found to be 49.99 g L?1 of glucose, 10 g L?1 of urea, 18.06% (v/v) of salt solution, and 4.99% (v/v) of inoculum size. The experimental glutamic acid yield at optimum condition was 19.69 g L?1, which coincided well to the value predicted by the model (19.61 g L?1). Using this methodology, a nonlinear regression model was developed for the glutamic acid production. The model was validated statistically and the determination coefficient (R 2) was found to be 0.99.  相似文献   

18.
19.
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
To improve the production of biodiesel by enzymatic conversion of triglycerides in cottonseed oil, compatible solutes were added to the solvent-free methanolysis system to prevent competitive methanol inhibition on the immobilized lipase (Novozym® 435). The results indicated that the addition of ectoine increased biodiesel synthesis using a three-step methanol addition process. The concentration of methyl ester (ME) reached a maximum of 95.0% in the presence of 1.1 mmol/l ectoine, an increase of 20.9% compared to that in the absence of ectoine. On the other hand, excess ectoine decreased the ME concentration. Ectoine was also shown to enhance reuse of the immobilized lipase, significantly improving ME concentrations in each recycling test. Total concentrations of ME with added ectoine were about 1.5 times that without ectoine during five recycling tests (molar ratio of cottonseed oil to methanol, 1:4). Enzymatic reaction kinetics showed, in the concentration ranges of 0.8–1.14 mol/l and 0.03–8 mol/l for triglyceride and methanol, respectively, that ectoine had no effect on the initial reaction rates when methanol concentrations were below 0.5 mol/l. When methanol concentration exceeded 0.5 mol/l, the addition of 0.8 mmol/l ectoine increased the initial reaction rates, and the lipase exhibited a lower affinity for methanol and higher affinity for triglyceride (kinetic parameters of KmA increase, KmTG decrease). However, the initial reaction rates decreased significantly when 8 mmol/l ectoine was added, with the lipase having higher affinity for methanol and lower affinity for triglyceride (KmA decrease, KmTG increase). The supplementation of ectoine provided a new method for the purpose of improving yield of biodiesel catalyzed by enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号