首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increase in species richness from the poles to the Equator has been observed in numerous terrestrial and aquatic taxa. A number of different hypotheses have been put forward as explanations for this trend, e.g. area and energy availability. However, whether these hypotheses apply to large spatial scales in marine environments remains unclear. The present study shows a clear latitudinal gradient from high to low latitude (from 80 degrees N to 70 degrees S) in marine species richness for 6643 species (fishes and invertebrates) in 10 different taxa dwelling in benthic and pelagic habitats on both sides of the Atlantic. The patterns in benthic taxa are strongly influenced by coastal hydrographic processes, with marked peaks and troughs, and consequently the gradients are not symmetric along both Atlantic sides. Pelagic taxa show a plateau-shaped distribution and the influence from coastal events on gradients could not be demonstrated. The relationships between species richness and different environmental factors indicate that area size does not explain the latitudinal pattern in benthic species richness on a large spatial scale. Sea-surface temperature (positive relationship) is the best predictor of this pattern for benthic species, and nitrate concentration (negative relationship) is the best predictor for pelagic species. The results call into question the existence of a single primary cause that would explain the pattern in marine species richness on a large spatial scale.  相似文献   

2.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

3.
Through their tissues or activities, engineer species create, modify, or maintain habitats and alter the distribution and abundance of many plants and animals. This study investigates key ecological functions performed by an engineer species that colonizes coastal ecosystems. The gregarious tubiculous amphipod Haploops nirae is used as a biological model. According to previous studies, the habitat engineered by H. nirae (i.e., Haploops habitat) could provide food and natural shelter for several benthic species such as benthic diatoms belonging to the gender Navicula, the micrograzer Geitodoris planata, or the bivalve Polititapes virgineus. Using data from scientific surveys conducted in two bays, this study explored whether (1) the Haploops sandy‐mud community modifies invertebrate and ichthyologic community structure (diversity and biomass); (2) H. nirae creates a preferential feeding ground; and (3) this habitat serves as a refuge for juvenile fish. Available Benthic Energy Coefficients, coupled with more traditional diversity indices, indicated higher energy available in Haploops habitat than in two nearby habitats (i.e., Sternaspis scutata and Amphiura filiformis/Owenia fusiformis habitats). The use of isotopic functional indices (IFIs) indicated (1) a higher functional richness in the Haploops habitat, related to greater diversity in food sources and longer food chains; and (2) a higher functional divergence, associated with greater consumption of a secondary food source. At the invertebrate‐prey level, IFIs indicated little specialization and little trophic redundancy in the engineered habitat, as expected for homogenous habitats. Our results partly support empirical knowledge about engineered versus nonengineered habitats and also add new perspectives on habitat use by fish and invertebrate species. Our analyses validated the refuge‐area hypothesis for a few fish species. Although unique benthic prey assemblages are associated with Haploops habitat, the hypothesis that it is a preferential feeding area was not verified. However, specialist feeding behavior was observed for predators, which calls for further investigation.  相似文献   

4.
Examination of latitudinal patterns in species richness, size, and distributional range of East Atlantic fish, based on a compilation of data encompassing the full latitudinal and depth distribution of 1746 East Atlantic fish species, showed that species richness declined towards higher latitudes at a rate of c 1 % of the number of species present, in five-degree bands, for each degree of latitude for both teleosts and elasmobranchs, regardless of habitat However, the latitudinal patterns in maximum fish size and latitudinal range differed between teleosts and elasmobranchs, and changed with habitat No clear evidence was obtained that the latitudinal range occupied increased with latitude, indicating that Rapoport's rule does not apply to E Atlantic fishes Rather, the latitudinal patterns in species richness, size, and distributional range of benthic Atlantic fish were depth-dependent, because species richness, average maximum size, and the average latitudinal range increased with depth and declined with latitude The importance of accounting for this depth-latitude covariation in the distribution of marine fish demonstrated here, together with recent evidence obtained for deep-sea benthic macrofauna, points to depth and latitude as the main factors in the distribution of marine animals  相似文献   

5.
Aim In this continental‐scale study, the biodiversity of benthic and planktonic algal communities was explored. A recent analysis of extinct and extant tree communities by Enquist et al. (2002) showed that richness of higher taxa was a power function of species richness, invariant across temporal and spatial scales. Here we examined whether the relationships between algal richness at hierarchical taxonomic levels conform to power laws as seen for trees, and if these relationships differ between benthic and planktonic habitats. Location Streams from more than 50 major watersheds in the United States. Method A total of 3698 samples were collected from 1277 locations by the National Water‐Quality Assessment Program. Three types of stream habitat were sampled: richest targeted habitats, depositional targeted habitats, and phytoplankton. The relationships between taxonomic richness at the species level vs. all higher categories from genus to phylum across the three habitats were examined by ordinary least squares (OLS) regressions after ln‐transformation of all variables. The slopes, b, of these regressions represent the exponents of the power functions that scaled the richness of higher taxonomic levels (T) to species richness (S) in the form: TSb. Results Algal richness at hierarchical taxonomic categories (genus to phylum) is a power function of species richness. The scaling exponent of this function, which captures the diversification of higher taxa, i.e. the rate of increase of their richness with the increase of species richness, is significantly different across environments. Main conclusions The differential algal diversification in the three studied habitats emphasizes the fundamental role of the environment in structuring the communities of simple organisms such as algae. The finding that the diversification of higher taxa is greater in the seemingly homogeneous planktonic environment, when compared to benthic habitats, encompassing an array of ecological niches, poses a new paradox of the plankton.  相似文献   

6.
Recently three biogeographical units were identified along the Chilean coast (the Magellanic Province, an Intermediate Area, and the Peruvian Province), however few studies have focused on the factors and dynamic processes that formed these spatial units (e.g. Rapoport's rule and its causal mechanisms). In this study we used benthic polychaetes of the Chilean coast to evaluate patterns of latitudinal distribution and species richness, and the existence of the three main biogeographical provinces described for the Chilean coast. Additionally, we evaluated the latitudinal Rapoport effects and geometric constraint as a null hypothesis explaining the species richness distribution.
We found that benthic polychaete diversity increased towards southern latitudes. The cluster and ordination (non-metric MultiDimensional Scaling, nMDS) analyses of the distribution data, presented only two statistically significant (bootstrapping techniques) biogeographic provinces along the Chilean coast, with a break occurring between 41° and 42°S. While, our results did not support a latitudinal Rapoport effect, they did support the view that latitudinal Rapoport effects are a local phenomenon, occurring only for the Northeastern Pacific marine taxa. The relationship between latitudinal range extent and mean latitude indicated the existence of two hard boundaries at either extreme of the Chilean coast, limiting the geographical ranges of the species. However, geometric constraints tested using a Monte Carlo simulation approach showed a weak level of mid-domain effect on species richness. Finally, we propose that geometric constraint together with the geomorphology and historical characteristics of the Chilean coast explain the biogeographical patterns of benthic polychaete taxa in Chile.  相似文献   

7.
Pathogen exposure has been suggested as one of the factors shaping the myriad of migration strategies observed in nature. Two hypotheses relate migration strategies to pathogen infection: the ‘avoiding the tropics hypothesis’ predicts that pathogen prevalence and transmission increase with decreasing non‐breeding (wintering) latitude, while the “habitat selection hypothesis” predicts lower pathogen prevalence in marine than in freshwater habitats. We tested these scarcely investigated hypotheses by screening wintering and resident wading shorebirds (Charadriiformes) for avian malaria blood parasites (Plasmodium and Haemoproteus spp.) along a latitudinal gradient in Australia. We sequenced infections to determine if wintering migrants share malaria parasites with local shorebird residents, and we combined prevalence results with published data in a global comparative analysis. Avian malaria prevalence in Australian waders was 3.56% and some parasite lineages were shared between wintering migrants and residents, suggesting active transmission at wintering sites. In the global dataset, avian malaria prevalence was highest during winter and increased with decreasing wintering latitude, after controlling for phylogeny. The latitudinal gradient was stronger for waders that use marine and freshwater habitats (marine + freshwater) than for marine‐restricted species. Marine + freshwater wader species also showed higher overall avian malaria parasite prevalence than marine‐restricted species. By combining datasets in a global comparative analysis, we provide empirical evidence that migratory waders avoiding the tropics during the non‐breeding season experience a decreased risk of malaria parasite infection. We also find global support for the hypothesis that marine‐restricted shorebirds experience lower parasite pressures than shorebirds that also use freshwater habitats. Our study indicates that pathogen transmission may be an important driver of site selection for non‐breeding migrants, a finding that contributes new knowledge to our understanding of how migration strategies evolve.  相似文献   

8.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

9.
Aim   We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types.
Location   Europe.
Methods   We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea . Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity.
Results   Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes.
Main conclusions   The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.  相似文献   

10.
Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter‐trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context‐dependency of the effects of consumer species loss by conducting a 15‐month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat‐dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non‐interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change. Synthesis The roles of species may vary with environmental context, making it difficult to predict how biodiversity loss affects ecosystem functioning across multiple habitats. We tested how natural algal assemblages in two distinct intertidal habitats responded to the removal of different combinations of key consumer species. Despite an initial habitat‐dependent effect of consumer loss, habitat type did not modify the longer‐term responses of algal assemblages to either the identity or number of consumer species removed. Our findings show that, in certain systems, consumer diversity remains a primary driver of ecosystem functioning across widely different environmental contexts.  相似文献   

11.
Published species lists were analysed to determine the contributions of dispersal, habitat preference, river channel size, body size, and glacial history to large‐scale patterns in freshwater fish species richness in North America, north of central Mexico. Total species richness declines to the north and west but the pattern for endemics differs from that of widespread species. Mississippi Basin regions are more species rich than more isolated, coastal, regions. Richness declines more rapidly with increasing latitude in riverine specialist than in habitat generalist species. Levels of endemism are greatest in species found in small‐ to medium‐sized river channels. The strong Rapoport effect, more marked in migratory than resident species, is correlated with habitat preference, channel size, and glacial history. Body size increases with latitude, largely as a result of a trend from small resident to large migrant species. In unglaciated regions, ancestral species survived in large habitats because these are longer‐lived, more extensive, less isolated and more stable than headwaters, permitting larger populations and lower extinction levels. Reduced levels of gene flow in small, peripheral, channels isolated by larger downstream habitats have resulted in the production of many, small range, small‐bodied species. The latitudinal richness gradient is a consequence of speciation and extinction events in unglaciated faunas and an increasing domination of faunas by generalist, large bodied, large channel, recolonizing species in more northern regions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 46–61.  相似文献   

12.
Understanding the patterns of biodiversity through time and space is a challenging task. However, phylogeny‐based macroevolutionary models allow us to account and measure many of the processes responsible for diversity buildup, namely speciation and extinction. The general latitudinal diversity gradient (LDG) is a well‐recognized pattern describing a decline in species richness from the equator polewards. Recent macroecological studies in ectomycorrhizal (EM) fungi have shown that their LDG is shifted, peaking at temperate rather than tropical latitudes. Here we investigate this phenomenon from a macroevolutionary perspective, focusing on a well‐sampled group of edible EM mushrooms from the genus Amanita—the Caesar's mushrooms, which follow similar diversity patterns. Our approach consisted in applying a suite of models including (1) nontrait‐dependent time‐varying diversification (Bayesian analysis of macroevolutionary mixtures [BAMM]), (2) continuous trait‐dependent diversification (quantitative‐state speciation and extinction [QuaSSE]), and (3) diversity‐dependent diversification. In short, results give strong support for high speciation rates at temperate latitudes (BAMM and QuaSSE). We also find some evidence for different diversity‐dependence thresholds in “temperate” and “tropical” subclades, and little differences in diversity due to extinction. We conclude that our analyses on the Caesar's mushrooms give further evidence of a temperate‐peaking LDG in EM fungi, highlighting the importance and the implications of macroevolutionary processes in explaining diversity gradients in microorganisms.  相似文献   

13.
The effects of habitat loss on local species richness depend on the characteristics of the endangered system (including its total species pool and the distribution of species among the habitats). The present study focuses on the species-poor southern Baltic marine benthic biota. Macrobenthic samples were collected in three habitats: (1) soft bottom covered with vegetation; (2) stony reefs; (3) unvegetated sands. Fourty one percent of 54 observed macrozoobenthic species were habitat specific, while 30% occurred in all three habitats. There were no significant differences in total species richness among the three habitats. The accumulation curves plotted for subsets of data with selected habitats excluded lay below the curve plotted for the whole dataset, but only in one case the 95% confidence intervals of the subset curve did not overlap with those plotted for the whole dataset. The exclusion of samples from selected habitats produced a species richness drop ranging from 9 to 13%. The present study showed that habitat loss in a species-poor area with a relatively large ratio of generalist species cannot produce local species richness declines similar to those predicted for diverse marine systems. However, it must be emphasized that in species-poor systems, the loss of ecological function accompanying habitat loss could be disproportionally higher than that predicted based on decreases in species richness, as some functions are performed by a single species.  相似文献   

14.
Seamounts: centres of endemism or species richness for ophiuroids?   总被引:1,自引:0,他引:1  
Aim To test the hypotheses that seamounts exhibit high rates of endemism and/or species richness compared to surrounding areas of the continental slope and oceanic ridges. Location The south‐west Pacific Ocean from 19–57° S to 143–171° E. Methods Presence/absence museum data were compiled for seamount and non‐seamount areas at depths between 100 and 1500 m for the Ophiuroidea (brittle‐stars), an abundant and speciose group of benthic invertebrates. Large‐scale biogeographical gradients were examined through multivariate analyses at two spatial scales, at the scale of seamounts (< 1° of latitude/longitude) and regions (5–9°). The robustness of these patterns to spatially inconsistent sampling effort was tested using Monte Carlo‐style simulations. Levels of local endemism and species richness over numbers of samples were compared for seamount and non‐seamount areas using linear regressions. Non‐seamount populations were randomly generated from areas and depth ranges that reflected the typical sampling profile of seamounts. Results Seamount ophiuroid assemblages did not exhibit elevated levels of species richness or narrow‐range endemism compared with non‐seamount areas. Seamounts can exhibit high overall species richness for low numbers of samples, particularly on seamounts supporting a dense coral matrix, but this does not increase with additional sampling at the rates found in non‐seamount areas. There were relatively few identifiable seamount specialists. In general, seamount faunas reflected those found at similar depths in surrounding areas, including the continental slope. Seamount and non‐seamount faunas within the study area exhibited congruent latitudinal and bathymetric species turnover. Main conclusions Seamount faunas were variable for ophiuroid faunal composition, species richness and narrow‐range endemism, reflecting their environmental diversity and complex history. The continental slope was also variable, with some areas being particularly species rich. Broad geomorphological habitat categories such as ‘seamounts’ or ‘continental slope’ may be at the wrong scale to be useful for conservation planning.  相似文献   

15.
The latitudinal species richness gradient (LRG) has been the subject of intense interest and many hypotheses but much less consideration has been given to longitudinal richness differences. The effect of postglacial dispersal, determined by connectivity and vagility, on richness was evaluated for the species‐poor European and North American Pacific and species‐rich Atlantic regional freshwater fish faunas. The numbers of species, by habitat, migration and distributional range categories, were determined from regional species lists for these three realms. The current orientation and past connections of drainage channels indicate that connectivity is greatest in the Atlantic and least in the Pacific. With increasing connectivity across realms, endemism decreased and postglacial recolonization increased, as did the LRG slope, with the greatest richness difference occurring between southern Atlantic and Pacific regions. Recolonizing species tended to be migratory, habitat generalists and from families of marine origin. Diversification, as indicated by species/genus ratios, probability of diversification, taxonomic distinctness and endemicity, declined with increasing latitude in all realms and was least in Europe. Richness patterns are consistent with an LRG driven by the time available for postglacial recolonization and by differences in dispersal ability, with richness differences across realms reflecting differences in dispersal and diversification.  相似文献   

16.
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta‐analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.  相似文献   

17.
We investigated the bat (Microchiroptera) diversity of four major habitat types within a large Australian subtropical city (Brisbane, Australia) to determine whether species richness was affected by habitat changes associated with urbanization, as suggested from studies elsewhere. Forty sites, ten in each habitat type (remnant bushland, parkland, low‐density residential and high‐density residential) were surveyed using acoustic bat detectors on six non‐consecutive occasions. Fourteen bat species were recorded. The species accumulation curve of the entire Brisbane bat assemblage reached a plateau at 14 species. The total numbers of species in bushland, parkland, low‐density residential and high‐density residential habitats were 14, 13, 14 and 11 species, respectively. Asymptotic estimates of species richness for each habitat were close or equal to these totals. Mean asymptotic estimated species richness differed significantly among habitats, being lowest in high‐density residential sites and highest in low‐density residential sites. Evenness profiles were similar across habitats, and were not strongly dominated by a few species. Partitioning of diversity components showed that landscape (γ) diversity was mainly determined by the high species richness of low‐density residential and bushland habitats (α diversity), rather than high beta (β) diversity among habitats. These findings contradict those of other studies on bat diversity in which species richness was highest within ‘natural’ areas of the urban landscape and assemblages were dominated by one or two species. This highlights the need for caution in making generalizations based on existing information, which is dominated by studies in temperate regions.  相似文献   

18.
Migratory species can exploit many habitats over vast geographic areas and adopt various patterns of space and habitat use throughout their annual cycle. In nomadic species, determinants of habitat use during the non‐breeding season are poorly known due to the unpredictability of their movement patterns. Here, we analysed variability in wintering space and habitat use by a highly nomadic species, the snowy owl, in eastern North America. Using 21 females tracked by satellite telemetry between 2007 and 2016, we 1) assessed how space use patterns in winter varied according to the type of environment (marine vs terrestrial), latitudinal zone (Arctic vs temperate), local snow conditions and lemming densities and 2) investigated winter habitat and site fidelity. Our results confirmed a high inter‐individual variation in patterns of habitat use by wintering snowy owls. Highly‐used areas were concentrated in the Arctic and in the marine and coastal environments. Owls wintering in the marine environment travelled over longer distances during the winter, had larger home ranges and these were divided in more smaller zones than individuals in terrestrial environments. Wintering home range sizes decreased with high winter lemming densities, use of the marine environment increased following high summer lemming densities, and a thick snow cover in autumn led to later settlement on the wintering ground. Contrary to expectations, snowy owls tended to make greater use of the marine environment when snow cover was thin. Snowy owls were highly consistent in their use of a given wintering environment and a specific latitudinal zone between years, but demonstrated flexibility in their space use and a modest site fidelity. The snowy owls’ consistency in wintering habitat use may provide them with advantages in terms of experience but their mobility and flexibility may help them to cope with changing environmental conditions at fine spatial scale.  相似文献   

19.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

20.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号