首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pholcodine is an opiate derivative drug which is widely used in pediatric medicine. In this study, a chemiluminescence (CL) method is described that determines pholcodine in human plasma and syrup samples. This method is based on the fact that pholcodine can greatly enhance the weak CL emission of reaction between tris(1,10 phenanthroline)ruthenium(II), Ru(phen)32+, and acidic Ce(IV). The CL mechanism is described in detail using UV–vis light, fluorescence and CL spectra. Effects of chemical variables were investigated and under optimum conditions, CL intensity was proportional to the pholcodine concentration over the range 4.0 × 10?8 to 8.0 × 10?6 mol  L?1. The limit of detection (LOD) (S/N = 3) was 2.5 × 10?8 mol  L?1. Percent of relative standard deviations (%RSD) for 3.0 × 10?7 and 3.0 × 10?6 mol  L?1 of pholcodine was 2.9 and 4.0%, respectively. Effects of common ingredients were investigated and the method was applied successfully to the determination of pholcodine in syrup samples and human plasma.  相似文献   

2.
An electrochemiluminescence (ECL) sensor based on reduced graphene oxide–CdTe quantum dots (RGO–CdTe QDs) composites for detecting copper ion (Cu2+) was proposed. The ECL behaviours of the RGO–CdTe QD modified electrode were investigated with H2O2 as the co‐reactant. Quantitative detection of Cu2+ was realized as Cu2+ could effectively quench the ECL signal of the RGO–CdTe QDs. A wide linear range of 1.00 × 10?14 to 1.00 × 10?4 M (R = 0.9953) was obtained under optimized conditions, and a detection limit (S/N = 3) was achieved of as low as 3.33 × 10?15 M. The proposed sensor also exhibited good stability and selectivity for the detection of copper ions. Finally, the analytical application of the proposed sensor was also evaluated using river water.  相似文献   

3.
In this paper, a new ‘turn‐on' fluorescence probe for the rapid, sensitive, and visual detection of hypochlorite is reported. The push–pull type trianiline–tricyanofuran‐based fluorescent probe was prepared using a condensation reaction between tricyanofuran and the thiophene–trianiline derivative that had high quantum yields and showed aggregation‐induced emission enhanced properties. Upon exposure to hypochlorite, prominent fluorescence enhancement of the probe was observed via the release of the fluorophore from the probe. The probe showed a ratiometric absorption change at 315 nm and 575 nm. Importantly, the probe showed an excellent detection limit for hypochlorite at 1.2 × 10?7 M in solution and it was successfully applied for monitoring hypochlorite in waste water by test strip. This work reports a new fluorescence analytical sensing method for hypochlorite that has potential practical value in environmental monitoring and biological discrimination.  相似文献   

4.
Based on the chemiluminescence (CL) phenomenon of peroxymonosulfate (PMS) and Tb(III) enhanced by its ligand in a micelle microenvironment, a fast and sensitive flow injection CL method for PMS detection was proposed and applied to the analysis of different samples and PMS decomposition. Under the optimized conditions, a linear range was obtained from 4.0 × 10–6 mol L–1 to 2.0 × 10–4 mol L–1 with a high correlation coefficient (r = 0.9997), detection limit of 5.0 × 10–7 mol L–1 (S/N = 3) and relative standard deviation of 2.4% for 1.0 × 10–5 mol L–1 PMS (n = 9). This was successfully applied to the determination of PMS in Virkon powder, tap water, and swimming pool water samples with satisfactory recoveries from 94.8% to 104.8% . In particular, the analytical frequency could be as fast as five samples per minute because there was no reaction step before analysis and the CL phenomenon was instantaneous. Therefore, this CL method has also been successfully applied to investigate the PMS decomposition profiles in carbon material (carbon nanotubes, carbon nanofibres, activated carbon and graphene oxide) catalysis systems, which followed pseudo‐first‐order kinetics with good correlation coefficients (r > 0.9305). Quenching experiments and electron spin resonance spectra verified that the CL phenomenon was due to the formation of singlet oxygen, and that hydroxyl and sulfate radicals might be important in the generation of singlet oxygen. Tb(III) is the luminescent emitter according to the characteristics emission bands of the fluorescence and CL spectra in different media.  相似文献   

5.
Biogeochemical, isotope geochemical and microbiological investigation of Lake Svetloe (White Sea basin), a meromictic freshwater was carried out in April 2014, when ice thickness was ~0.5 m, and the ice‐covered water column contained oxygen to 23 m depth. Below, the anoxic water column contained ferrous iron (up to 240 μμM), manganese (60 μM), sulfide (up to 2 μM) and dissolved methane (960 μM). The highest abundance of microbial cells revealed by epifluorescence microscopy was found in the chemocline (redox zone) at 23–24.5 m. Oxygenic photosynthesis exhibited two peaks: the major one (0.43 μmol C L?1 day?1) below the ice and the minor one in the chemocline zone, where cyanobacteria related to Synechococcus rubescens were detected. The maximum of anoxygenic photosynthesis (0.69 μmol C L?1 day?1) at the oxic/anoxic interface, for which green sulfur bacteria Chlorobium phaeoclathratiforme were probably responsible, exceeded the value for oxygenic photosynthesis. Bacterial sulfate reduction peaked (1.5 μmol S L?1 day?1) below the chemocline zone. The rates of methane oxidation were as high as 1.8 μmol CH4 L?1 day?1 at the oxi/anoxic interface and much lower in the oxic zone. Small phycoerythrin‐containing Synechococcus‐related cyanobacteria were probably involved in accumulation of metal oxides in the redox zone.  相似文献   

6.
Glibenclamide (GB), as a sulfonylurea‐based medication is commonly prescribed for the treatment of type 2 diabetes. Due to its increasing consumption, there is a need to develop a simple, fast, and reliable detection method to follow its concentration in pharmaceutical and biological samples. Herein, a novel fluorometric method is developed for the sensitive measurement of GB. The method is based on the enhancing effect of GB on the fluorescence emission of mercaptopropionic acid (MPA) capped cadmium telluride quantum dots (CdTe QDs). QDs were synthesized in aqueous solution and were characterized by fluorescence spectroscopy, transmission electron microscopy (TEM), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT‐IR). Fluorescence intensity of QDs was enhanced by adding GB in a very low concentration. The effect of operative factors such as pH, buffer, contact time and concentration of CdTe QDs were investigated and in the optimized condition, a linear increase was achieved for the emission intensity of QDs by increasing GB concentration in the range 49–345 ng mL?1, with a detection limit of 17.84 ng mL?1. The offered method has an acceptable precision (relative standard deviations were < 2.8%) and was satisfactorily applied for the determination of GB in pharmaceutical products and human urine samples.  相似文献   

7.
Three microalgal species (Dictyosphaerium chlorelloides (D.c.), Scenedesmus intermedius (S.i.) and Scenedesmus sp. (S.s.)) were encapsulated in silicate sol–gel matrices and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine. Influence of several parameters on the preparation of the sensing layers has been evaluated: effect of pH on sol–gel gelation time; effect of algae density on sensor response; influence of glycerol (%) on the membrane stability. Long term stability was also tested and the fluorescence signal from biosensors remained stable for at least 3 weeks. D.c. biosensor presented the lowest detection limits for simazine (3.6 μg L−1) and the broadest dynamic calibration range (19–860 μg L−1) with IC50 125 ± 14 μg L−1. Biosensor was validated by HPLC with UV/DAD detection. The biosensor showed response to those herbicides that inhibit the photosynthesis at photosystem II (triazines: simazine, atrazine, propazine, terbuthylazine; urea based herbicides: linuron). However, no significant increases of fluorescence response was obtained for similar concentrations of 2,4-D (hormonal herbicide) or Cu(II). The combined use of two biosensors that use two different genotypes, sensitive and resistant to simazine, jointly allowed improving microalgae biosensor specificity.  相似文献   

8.
A novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)–functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM). Based on ECL experimental results, the PdNPs–FCNTs–Nafion film modified electrode displayed high electrocatalytic activity towards the oxidation of glucose. The free radicals generated by the glucose oxidation reacted with the luminol anion (LH), and enhanced the ECL signal. Under the optimized conditions, the linear response of ECL intensity to glucose concentration was valid in the range from 0.5 to 40 μmol L−1 (r2 = 0.9974) with a detection limit (S/N = 3) of 0.09 μmol L−1. In addition, the modified electrode presented high resistance towards the poisoning of chloride ion, high selectivity and long-term stability. In order to verify the sensor reliability, it was applied to the determination of glucose in glucose injection samples. The results indicated that the proposed approach provided a highly sensitive, more facile method with good reproducibility for glucose determination, promising the development of a non-enzymatic ECL glucose sensor.  相似文献   

9.
A rapid, simple and sensitive label‐free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water‐soluble glutathione‐capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X‐ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione‐capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0–200.0 ng mL?1 with a low limit of detection, 2.0 ng mL?1. The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A simple phosphorescence method is proposed for quercetin detection based on Al3+-amplified room-temperature phosphorescence (RTP) signals of 3-mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs). The sensor was established based on some properties as follows. Al3+ can interact with carboxyl groups on the surface of MPA-capped Mn-doped ZnS QDs via chelation, which will lead to the aggregation of QDs and amplification of RTP signals, After the addition of quercetin, it can form more stable complex with Al3+ in alkaline aqueous solution and dissociate Al3+ from the surface of Mn-doped ZnS QDs, which will result in significant recovery of RTP intensity of the MPA-capped Mn-doped ZnS–Al3+ system. Under the optimized conditions, the change of RTP intensity was proportional to the concentration of quercetin in the range from 0.1 to 6.0 mg L−1, with a high correlation coefficient of 0.996 and a detection limit of 0.047 mg L−1. The proposed method is potentially suitable for detection of quercetin in real samples without complicated pretreatment.  相似文献   

11.
In the present study, an electrochemical aptasensor for highly sensitive detection of thrombin was developed based on bio-barcode amplification assay. For this proposed aptasensor, capture DNA aptamerI was immobilized on the Au electrode. The functional Au nanoparticles (DNA–AuNPs) are loaded with barcode binding DNA and aptamerII. Through the specific recognition for thrombin, a sandwich format of Au/aptamerI/thrombin/DNA–AuNPs was fabricated. After hybridization with the PbSNPs-labeled barcode DNA, the assembled sensor was obtained. The concentration of thrombin was monitored based on the concentration of lead ions dissolved through differential pulse anodic stripping voltammetric (DPASV). Under optimum conditions, a detection limit of 6.2 × 10−15 mol L−1 (M) thrombin was achieved. In addition, the sensor exhibited excellent selectivity against other proteins.  相似文献   

12.
A sensitive and simple method for the determination of enoxacin (ENX) was developed based on the fluorescence quenching effect of ENX for glutathione (GSH)‐capped CdTe quantum dots (QDs). Under optimum conditions, a good linear relationship was obtained from 4.333 × 10?9 mol?L?1 to 1.4 × 10?5 mol?L?1 with a correlation coefficient (R) of 0.9987, and the detection limit (3σ/K) was 1.313 × 10?9 mol?L?1. The corresponding mechanism has been proposed on the basis of electron transfer supported by ultraviolet–visible (UV) light absorption, fluorescence spectroscopy, and the measurement of fluorescence lifetime. The method has been applied to the determination of ENX in pharmaceutical formulations (enoxacin gluconate injections and commercial tablets) with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
An advanced electrochemical sensor for the detection of enrofloxacin (ENR) based on the use of a modified electrode containing cadmium sulfide (CdS) nanoparticles (NPs) is reported. The CdS NPs were synthesized and characterized and then coated onto the electrode to fabricate a modified electrode that exhibited a lower limit of detection of 9.5 × 10?8 mol·L?1. This detection limit compares with a traditional electrode that exhibited a concentration detection range of 1.0 × 10?2 to 1.0 × 10?7 mol·L?1. This modified electrode demonstrated good selectivity, reproducibility, response time (<40 s), lifetime (up to 12 wk), and pH range (3.3‐7.2) for the determination of ENR in real samples (eg, pig urine).  相似文献   

14.
In this work, we synthesized water‐soluble L ‐cysteine‐capped alloyed CdSeTe core quantum dots (QDs) and investigated the structural and optical properties of deposition of each of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shell layers. Photophysical results showed that the overcoating of a CdS shell around the alloyed CdSeTe core [quantum yield (QY) = 8.4%] resulted in effective confinement of the radiative exciton with an improved QY value of 93.5%. Subsequent deposition of a ZnSe shell around the CdSeTe/CdS surface decreased the QY value to 24.7%, but an increase in the QY value of up to 49.5% was observed when a ZnS shell was overcoated around the CdSeTe/CdS/ZnSe surface. QDs with shell layers showed improved stability relative to the core. Data obtained from time‐resolved fluorescence measurements provided useful insight into variations in the photophysical properties of the QDs upon the formation of each shell layer. Our study suggests that the formation of CdSeTe/CdS core/shell QDs meets the requirements of quality QDs in terms of high photoluminescence QY and stability, hence further deposition of additional shells are not necessary in improving the optical properties of the core/shell QDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposed a simple and sensitive approach for detecting graphene oxide (GO) in a wide pH range in environmental water samples using fluorescent β‐CD protected Cu NCs based on the hydrogen‐bond interactions between GO and 6‐SH‐β‐CD. The influences of dilution ratio and pH were investigated. We found that the fluorescence quenching efficiency of Cu NCs by GO remained almost the same under pH from 4 to 10, which benefitted the monitoring of GO under different pH conditions in real samples. The fluorescence quenching mechanism was also discussed. The fluorescence of β‐CD protected Cu NCs could be quenched in the presence of GO with a lowest detection concentration of 0.1 mg·L?1. Good linear correlations were obtained over the concentration range from 0 to 30 mg·L?1 at different pH values (pH = 4, pH = 7 and pH = 12). In addition, this method was successfully applied to the determination of GO in real samples which presents more opportunities for application in environmental and material sciences.  相似文献   

16.
Development of the fluorescent pH detection method is promising due to the sensitivity, easy operation, and low‐cost, etc. However, traditional organic fluorophores have still some disadvantages such as the tedious preparation and purification as well as low photostability and water solubility, which limits the rapid detection application. Semiconductor quantum dots (QDs) have recently risen to prominence as an alternative for organic fluorophores in fluorescence analysis by virtue of their convenient synthesis and superior optical properties. In this study, we report on sodium 4‐mercaptophenolate functionalized CdSe/ZnS QDs (denoted as ?OPhS‐QDs), which can serve as a selective “on–off” fluorescence probe for aqueous media pH. ?OPhS‐QDs exhibit strong fluorescence in near neutral medium. As a Lewis organic base, ?OPhS‐ moieties on QDs surface easily binds to proton under acidic conditions to yield 4‐mercaptophenol capped QDs (i.e. HOPhS‐QDs), which acts as an efficient hole trapper. As a result, the QDs photoluminescence (PL) is switched off. Under optimal conditions, the present probe exhibits a good linear relationship between fluorescence response and pH values in the pH range 3.0–5.2. Furthermore, the present probe exhibits a high selectivity for proton over other common cations and has been successfully used for pH detection in real water samples.  相似文献   

17.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

18.
We here for the first time demonstrate an analytical approach for the highly selective and sensitive detection of amoxicillin (Amox) in aqueous medium based on the fluorescence quenching of quantum dots (QDs). The change in fluorescence intensity of mercaptopropionic acid‐capped cadmium sulphide (MPA‐CdS) QDs is attributed to the increasing concentration of Amox. The results show that the fluorescence quenching of QDs by Amox takes place through both static and dynamic types of quenching mechanism. The fluorescence quenching of QDs with increase in concentration of Amox shows the linear range between 5 μg ml?1 and 30 μg ml?1 and the limit of detection (LOD) is 5.19 μg ml?1. There is no interference of excipients, which are commonly present in pharmaceutical formulation and urine samples. For the practical application approach, the developed method has been successfully applied for the determination of Amox in pharmaceutical formulations and urine samples with acceptable results.  相似文献   

19.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   

20.
A novel direct readout colorimetric optical glucose sensor strip was constructed based on a three-layer film, including a green-emitted CdTe/CdS quantum dots (QDs) layer as a stable color background, a red-fluorescent platinum-porphyrin oxygen-sensing layer and a glucose oxidase layer. The sensor achieved high resolution (up to 0.2 mmol L−1) glucose determination with a detection range from 0 to 3.0 mmol L−1. A “glucose ruler” which acts as a glucose standard colorimetric card was obtained. Glucose concentration could easily be directly readout using the “glucose ruler”, which made the glucose determination rapid, convenient and easy. The effects of pH, salinity and temperature were systematically investigated. The prepared sensor was finally applied for glucose sample analysis, compared with the “glucose ruler”, accurate results could be directly readout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号