首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Polycomb (PcG) and Trithorax (TrxG) group proteins are essential for development in all multicellular organisms. Mutations of the PcG and TrxG genes act as early embryonic lethals, while their overexpression correlates with malignancies. Comparative genomic analysis showed that PcG and TrxG form a binary regulatory system that functions as an epigenetic rheostat to determine the threshold levels of extracellular signals affecting the expression levels of key developmental genes.  相似文献   

2.
Shvarts IuB  Kahn TG  Pirrotta V 《Genetika》2010,46(10):1413-1416
The Polycomb (PcG) and Trithorax (TrxG) group proteins are essential for development in all multicellular organisms. Mutations of the PcG and TrxG genes act as early embryonic lethals, while their overexpression correlates with malignancies. Comparative genome analysis showed that PcG and TrxG form a binary regulatory system that functions as an epigenetic rheostat to determine the threshold levels of extracellular signals affecting the expression levels of key developmental genes.  相似文献   

3.
4.
5.
6.
7.
8.
The Polycomb (PcG) and Trithorax (TrxG) group proteins work antagonistically on several hundred developmentally important target genes, giving stable mitotic memory, but also allowing flexibility of gene expression states. How this is achieved in quantitative terms is poorly understood. Here, we present a quantitative kinetic analysis in living Drosophila of the PcG proteins Enhancer of Zeste, (E(Z)), Pleiohomeotic (PHO) and Polycomb (PC) and the TrxG protein absent, small or homeotic discs 1 (ASH1). Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy reveal highly dynamic chromatin binding behaviour for all proteins, with exchange occurring within seconds. We show that although the PcG proteins substantially dissociate from mitotic chromatin, ASH1 remains robustly associated with chromatin throughout mitosis. Finally, we show that chromatin binding by ASH1 and PC switches from an antagonistic relationship in interphase, to a cooperative one during mitosis. These results provide quantitative insights into PcG and TrxG chromatin-binding dynamics and have implications for our understanding of the molecular nature of epigenetic memory.  相似文献   

9.
Two main classes of proteins, Polycomb group (PcG) and Trithorax group (TrxG), play a key role in the regulation of homeotic genes. These proteins act in multimeric complexes to remodel chromatin. A third class of proteins named Enhancers of Trithorax and Polycomb (ETP) modulates the activity of TrxG and PcG, but their role remains largely unknown. We previously identified an HMGB‐like protein, DSP1 (Dorsal Switch Protein 1), which was classified as an ETP. Preliminary studies have revealed that DSP1 is involved in multimeric complexes. Here we identify a DEAD‐box RNA helicase, Rm62, as partner of DSP1 in a 250‐kDa complex. Coimmunoprecipitation assays performed on embryo extracts indicate that DSP1 and Rm62 are associated in 3‐ to 12‐h embryos. Furthermore, DSP1 and Rm62 colocalize on polytene chromosomes. Consistent with these results, a mutation in Rm62 enhances a null mutation of dsp1 and also mutations of trxG or PcG, suggesting that Rm62 has characteristics of an ETP. We show here for the first time that an RNA helicase is involved in the maintenance of homeotic genes. genesis 48:244–253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Zhang C  Liu B  Li G  Zhou L 《遗传学报》2011,38(10):453-460
Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity.PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications,respectively,and thus maintaining the expression status of homeotic genes.Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers.Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis.Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer.It is anticipated that Drosophila melanogaster,the model organism that contributed significantly to our understanding of the functional role of histone regulation in development,could also provide unique insight for our understanding of how histone dysregulation can lead to cancer.In this review,we will discuss several recent advances in this regard.  相似文献   

11.
12.
《遗传学报》2011,38(1)
Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity.PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications,respectively,and thus maintaining the expression status of homeotic genes.Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers.Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis.Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer.It is anticipated that Drosophila melanogaster,the model organism that contributed significantly to our understanding of the functional role of histone regulation in development,could also provide unique insight for our understanding of how histone dysregulation can lead to cancer.In this review,we will discuss several recent advances in this regard.  相似文献   

13.
14.
In Arabidopsis, the role of the vernalization pathway is to repress expression of a potent floral repressor, FLOWERING LOCUS C (FLC), after a sufficient period of winter cold has been perceived. Following winter, the lack of FLC expression allows unimpeded operation of the photoperiod pathway and hence rapid flowering of vernalized plants in spring via the activation of floral integrator genes. Molecular studies revealed that regulation of the key floral repressor, FLC, is under the control of the interplay between Trithorax group (TrxG)-mediated activation and Polycomb group (PcG)-mediated repression. On-off switch of genes by TrxG and PcG is an evolutionarily conserved mechanism to coordinate cellular identity in eukaryotes. Regulation of FLC by external cues provides an excellent model system to study mechanisms in which cell identity is influenced by environment. In this review, we discuss coordinated contributions by protein and long noncoding RNA components to this environmentally induced epigenetic switch of a developmental program in plants.  相似文献   

15.
16.

Background

Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called “Enhancers of Trithorax and Polycomb” (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown.

Methodology/Principal Findings

In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene.

Conclusions/Significance

Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.  相似文献   

17.
BURP domain‐containing proteins belong to a plant‐specific protein family and have diverse roles in plant development and stress responses. However, our understanding about the genetic divergence patterns and evolutionary rates of these proteins remain inadequate. In this study, 15 plant genomes were explored to elucidate the genetic origins, divergence, and functions of these proteins. One hundred and twenty‐five BURP protein‐encoding genes were identified from four main plant lineages, including 13 higher plant species. The absence of BURP family genes in unicellular and multicellular algae suggests that this family (1) appeared when plants shifted from relatively stable aquatic environments to land, where conditions are more variable and stressful, and (2) is critical in the adaptation of plants to adverse environments. Promoter analysis revealed that several responsive elements to plant hormones and external environment stresses are concentrated in the promoter region of BURP protein‐encoding genes. This finding confirms that these genes influence plant stress responses. Several segmentally and tandem‐duplicated gene pairs were identified from eight plant species. Thus, in general, BURP domain‐containing genes have been subject to strong positive selection, even though these genes have conformed to different expansion models in different species. Our study also detected certain critical amino acid sites that may have contributed to functional divergence among groups or subgroups. Unexpectedly, all of the critical amino acid residues of functional divergence and positive selection were exclusively located in the C‐terminal region of the BURP domain. In conclusion, our results contribute novel insights into the genetic divergence patterns and evolutionary rates of BURP proteins.  相似文献   

18.
The zinc finger associated domain (ZAD), present in almost 100 distinct proteins, characterizes the largest subgroup of C2H2 zinc finger proteins in Drosophila melanogaster and was initially found to be encoded by arthropod genomes only. Here, we report that the ZAD was also present in the last common ancestor of arthropods and vertebrates, and that vertebrate genomes contain a single conserved gene that codes for a ZAD-like peptide. Comparison of the ZAD proteomes of several arthropod species revealed an extensive and species-specific expansion of ZAD-coding genes in higher holometabolous insects, and shows that only few ZAD-coding genes with essential functions in Drosophila melanogaster are conserved. Furthermore, at least 50% of the ZAD-coding genes of Drosophila melanogaster are expressed in the female germline, suggesting a function in oocyte development and/or a requirement during early embryogenesis. Since the majority of the essential ZAD coding genes of Drosophila melanogaster were not conserved during arthropod or at least during insect evolution, we propose that the LSE of ZAD-coding genes shown here may provide the raw material for the evolution of new functions that allow organisms to pursue novel evolutionary paths.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号