首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p53 is required for DNA damage‐induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53‐deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA‐dependent protein kinase (DNA‐PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation‐induced apoptosis, whereas apoptosis in DNA‐PKcs/p53, Ku80/p53 and Ku70/p53 double‐null mice was quantitatively equivalent to that seen in wild‐type mice. This p53‐independent apoptotic response was specific to the loss of DNA‐PK, as it was not seen in ligase IV (Lig4)/p53 or ataxia telangiectasia mutated (Atm)/p53 double‐null mice. Furthermore, it was associated with an increase in phospho‐checkpoint kinase 2 (CHK2), and cleaved caspases 3 and 9, the latter indicating engagement of the intrinsic apoptotic pathway. This shows that there are two separate, but equally effective, apoptotic responses to DNA damage: one is p53 dependent and the other, engaged in the absence of DNA‐PK, does not require p53.  相似文献   

2.
3.
In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere replication. Epistasis analysis and telomere sequencing show that sua5Δ cells display progressively shortened telomeres at early passages, and Sua5 functions downstream telomerase recruitment. Further, biochemical, structural and genetic studies show that Sua5p specifically binds single‐stranded telomeric (ssTG) DNA in vitro through a distinct DNA‐binding region on its surface, and the DNA‐binding ability is essential for its telomere function. Thus, Sua5p represents a novel ssTG DNA‐binding protein and positively regulates the telomere length in vivo.  相似文献   

4.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
6.
DNA‐assisted proteomics technologies enable ultra‐sensitive measurements in multiplex format using DNA‐barcoded affinity reagents. Although numerous antibodies are available, nowadays targeting nearly the complete human proteome, the majority is not accessible at the quantity, concentration, or purity recommended for most bio‐conjugation protocols. Here, we introduce a magnetic bead‐assisted DNA‐barcoding approach, applicable for several antibodies in parallel, as well as reducing required reagents quantities up to a thousand‐fold. The success of DNA‐barcoding and retained functionality of antibodies were demonstrated in sandwich immunoassays and standard quantitative Immuno‐PCR assays. Specific DNA‐barcoding of antibodies for multiplex applications was presented on suspension bead arrays with read‐out on a massively parallel sequencing platform in a procedure denoted Immuno‐Sequencing. Conclusively, human plasma samples were analyzed to indicate the functionality of barcoded antibodies in intended proteomics applications.  相似文献   

7.
8.
Studies have identified a sub‐group of SGS3‐LIKE proteins including FDM1–5 and IDN2 as key components of RNA‐directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5′ overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss‐of‐function of FDM1. These results demonstrate that XH domain‐mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled‐coil domain. RNAs with 5′ overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.  相似文献   

9.
10.
Plasmonic nanomaterials, especially Au and Ag nanomaterials, have shown attractive physicochemical properties, such as easy functionalization and tunable optical bands. The development of this active subfield paves the way to the fascinating biosensing platforms. In recent years, plasmonic nanomaterials–based sensors have been extensively investigated because they are useful for genetic diseases, biological processes, devices, and cell imaging. In this account, a brief introduction of the development of optical biosensors based on DNA‐functionalized plasmonic nanomaterials is presented. Then the common strategies for the application of the optical sensors are summarized, including colorimetry, fluorescence, localized surface plasmon resonance, and surface‐enhanced resonance scattering detection. The focus is on the fundamental aspect of detection methods, and then a few examples of each method are highlighted. Finally, the opportunities and challenges for the plasmonic nanomaterials–based biosensing are discussed with the development of modern technologies.  相似文献   

11.
12.
13.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

14.
15.
DNA‐binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA‐binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein–DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein–DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein–DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA‐binding proteins and structural variations. The results indicate that HS and MS DNA‐binding domains have larger conformational changes upon DNA‐binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147–1161. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
8‐Hydroxyquinoline‐7‐carboxaldehyde (8‐HQ‐7‐CA), Schiff‐base ligand 8‐hydroxyquinoline‐7‐carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO3)(H2O)2]2 were prepared from the ligand and equivalent molar amounts of Ln(NO3)?6 H2O (Ln=La3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Ho3+, Er3+, Yb3+, resp.). Ligand acts as dibasic tetradentates, binding to LnIII through the phenolate O‐atom, N‐atom of quinolinato unit, and C?N and ? O? C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O‐atoms leading to a central four‐membered (LnO)2 ring. Ligand and all of the LnIII complexes can strongly bind to CT‐DNA through intercalation with the binding constants at 105–106 M ?1. Moreover, ligand and all of the LnIII complexes have strong abilities of scavenging effects for hydroxyl (HO.) radicals. Both the antioxidation and DNA‐binding properties of LnIII complexes are much better than that of ligand.  相似文献   

17.
Nucleic acids analogues, i.e., oligonucleotide N3′→P5′ phosphoramidates and N3′→P5′ thio‐phosphoramidates, containing 3′‐amino‐3′‐deoxy nucleosides with various 2′‐substituents were synthesized and extensively studied. These compounds resist nuclease hydrolysis and form stable duplexes with complementary native phosphodiester DNA and, particularly, RNA strands. An increase in duplexes' melting temperature, ΔTm, relative to their phosphodiester counterparts, reaches 2.2–4.0° per modified nucleoside. 2′‐OH‐ (RNA‐like), 2′‐O‐Me‐, and 2′‐ribo‐F‐nucleoside substitutions result in the highest degree of duplex stabilization. Moreover, under close to physiological salt and pH conditions, the 2′‐deoxy‐ and 2′‐fluoro‐phosphoramidate compounds form extremely stable triple‐stranded complexes with either single‐ or double‐stranded phosphodiester DNA oligonucleotides. Melting temperature, Tm, of these triplexes exceeds Tm values for the isosequential phosphodiester counterparts by up to 35°. 2′‐Deoxy‐N3′→P5′ phosphoramidates adopt RNA‐like C3′‐endo or N‐type nucleoside sugar‐ring conformations and hence can be used as stable RNA mimetics. Duplexes formed by 2′‐deoxy phosphoramidates with complementary RNA strands are not substrates for RNase H‐mediated cleavage in vitro. Oligonucleotide phosphoramidates and especially thio‐phosphoramidates conjugated with lipid groups are cell‐permeable and demonstrate high biological target specific activity in vitro. In vivo, these compounds show good bioavailability and efficient biodistribution to all major organs, while exerting acceptable toxicity at therapeutically relevant doses. Short oligonucleotide N3′→P5′ thio‐phosphoramidate conjugated to 5′‐palmitoyl group, designated as GRN163L (Imetelstat), was recently introduced as a potent human telomerase inhibitor. GRN163L is not an antisense agent; it is a direct competitive inhibitor of human telomerase, which directly binds to the active site of the enzyme and thus inhibits its activity. This compound is currently in multiple Phase‐I and Phase‐I/II clinical trials as potential broad‐spectrum anticancer agent.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号