首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Decades of research have provided robust evidence of cognitive impairments in psychotic disorders. Individuals with schizophrenia appear to be impaired on the majority of neuropsychological tasks, leading some researchers to argue for a “generalized deficit”, in which the multitude of cognitive impairments are the result of a common neurobiological source. One such common mechanism may be an inability to actively represent goal information in working memory as a means to guide behavior, with the associated neurobiological impairment being a disturbance in the function of the dorsolateral prefrontal cortex. Here, we provide a discussion of the evidence for such impairment in schizophrenia, and how it manifests in domains typically referred to as cognitive control, working memory and episodic memory. We also briefly discuss cognitive impairment in affective psychoses, reporting that the degree of impairment is worse in schizophrenia than in bipolar disorder and psychotic major depression, but the profile of impairment is similar, possibly reflecting common mechanisms at the neural level. Given the recent release of the DSM‐5, we end with a brief discussion on assessing cognition in the context of diagnosis and treatment planning in psychotic disorders.  相似文献   

2.
Early psychological theories of autism explained the clinical features of this condition in terms of perceptual and sensory processing impairments. The arrival of domain-specific social cognitive theories changed this focus, postulating a ‘primary’ and specific psychological impairment of social cognition. Across the years, evidence has been growing in support of social cognitive and social attention explanations in autism. However, there has also been evidence for general non-social cognitive impairments in representational understanding, attention allocation and sensory processing. Here, I review recent findings and consider the case for the specificity and primacy of the social cognitive impairment, proposing that we should focus more explicitly on clinically valid features for insights on the integration of ‘social’ and ‘non-social’ cognition.  相似文献   

3.
The psychotomimetic effects of N-methyl-d-aspartate receptor (NMDA) antagonists such as ketamine and phencyclidine suggest a role for reduced NMDA receptor-mediated neurotransmission in schizophrenia. GluN1 'hypomorph' (GluN1(hypo) ) mice exhibit reduced NMDA receptor expression and have been suggested as a mouse model of schizophrenia. However, NMDA receptors are ubiquitous and are implicated in many physiological and pathological processes. The GluN1(hypo) mice have a global reduction of NMDA receptors and the consequences of such a global manipulation are likely to be wide-ranging. We therefore assessed GluN1(hypo) mice on a battery of behavioral tests, including tests of naturalistic behaviors, anxiety and cognition. GluN1(hypo) mice exhibited impairments on all tests of cognition that we employed, as well as reduced engagement in naturalistic behaviors, including nesting and burrowing. Behavioral deficits were present in both spatial and non-spatial domains, and included deficits on both short- and long-term memory tasks. Results from anxiety tests did not give a clear overall picture. This may be the result of confounds such as the profound hyperactivity seen in GluN1(hypo) mice, although hyperactivity cannot account for all of the results obtained. When viewed against this background of far-reaching behavioral abnormalities, the specificity of any one behavioral deficit is inevitably called into question. Indeed, the present data from GluN1(hypo) mice are indicative of a global impairment rather than any specific disease. The deficits seen go beyond what one would expect from a mouse model of schizophrenia, thus questioning their utility as a selective model of this disease.  相似文献   

4.
The dystrobrevin‐binding protein 1 (DTNBP1) gene is a candidate risk factor for schizophrenia and has been associated with cognitive ability in both patient populations and healthy controls. DTNBP1 encodes dysbindin protein, which is localized to synaptic sites and is reduced in the prefrontal cortex and hippocampus of patients with schizophrenia, indicating a potential role in schizophrenia etiology. Most studies of dysbindin function have focused on the sandy (sdy) mice that lack dysbindin protein and have a wide range of abnormalities. In this study, we examined dysbindin salt and pepper (spp) mice that possess a single point mutation on the Dtnbp1 gene predicted to reduce, but not eliminate, dysbindin expression. By western blot analysis, we found that spp homozygous (spp ?/?) mutants had reduced dysbindin and synaptosomal‐associated protein 25 (SNAP‐25) in the prefrontal cortex, but unaltered levels in hippocampus. Behaviorally, spp mutants performed comparably to controls on a wide range of tasks assessing locomotion, anxiety, spatial recognition and working memory. However, spp ?/? mice had selective deficits in tasks measuring novel object recognition and social novelty recognition. Our results indicate that reduced dysbindin and SNAP‐25 protein in the prefrontal cortex of spp ?/? is associated with selective impairments in recognition processing. These spp mice may prove useful as a novel mouse model to study cognitive deficits linked to dysbindin alterations. Our findings also suggest that aspects of recognition memory may be specifically influenced by DTNBP1 single nucleotide polymorphisms or risk haplotypes in humans and this connection should be further investigated.  相似文献   

5.
Noise pollution is commonly associated with human environments and mounting evidence indicates that noise has a variety of negative effects on wildlife. Noise has also been linked to cognitive impairment in humans and because many animals use cognitively intensive processes to overcome environmental challenges, noise pollution has the potential to interfere with cognitive function in animals living in urban areas or near roads. We experimentally examined how road traffic noise impacts avian cognitive performance by testing adult zebra finches (Taeniopygia guttata) on a battery of foraging tasks in the presence or absence of traffic noise playback. Here, we show that traffic noise reduces cognitive performance, including inhibitory control, motor learning, spatial memory and social learning, but not associative colour learning. This study demonstrates a novel mechanism through which anthropogenic noise can impact animals, namely through cognitive interference, and suggests that noise pollution may have previously unconsidered consequences for animals.  相似文献   

6.
7.

Background

Impairments in mismatch negativity (MMN) generation have been consistently reported in patients with schizophrenia. However, underlying oscillatory activity of MMN deficits in schizophrenia and the relationship with cognitive impairments have not been investigated in detail. Time-frequency power and phase analyses can provide more detailed measures of brain dynamics of MMN deficits in schizophrenia.

Method

21 patients with schizophrenia and 21 healthy controls were tested with a roving frequency paradigm to generate MMN. Time-frequency domain power and phase-locking (PL) analysis was performed on all trials using short-time Fourier transforms with Hanning window tapering. A comprehensive battery (CANTAB) was used to assess neurocognitive functioning.

Results

Mean MMN amplitude was significantly lower in patients with schizophrenia (95% CI 0.18 - 0.77). Patients showed significantly lower EEG power (95% CI -1.02 - -0.014) in the ~4-7 Hz frequency range (theta band) between 170 and 210 ms. Patients with schizophrenia showed cognitive impairment in multiple domains of CANTAB. However, MMN impairments in amplitude and power were not correlated with clinical measures, medication dose, social functioning or neurocognitive performance.

Conclusion

The findings from this study suggested that while MMN may be a useful marker to probe NMDA receptor mediated mechanisms and associated impairments in gain control and perceptual changes, it may not be a useful marker in association with clinical or cognitive changes. Trial-by-trial EEG power analysis can be used as a measure of brain dynamics underlying MMN deficits which also can have implications for the use of MMN as a biomarker for drug discovery.  相似文献   

8.
Cognitive neuroscience research on facial expression recognition and face evaluation has proliferated over the past 15 years. Nevertheless, large questions remain unanswered. In this overview, we discuss the current understanding in the field, and describe what is known and what remains unknown. In §2, we describe three types of behavioural evidence that the perception of traits in neutral faces is related to the perception of facial expressions, and may rely on the same mechanisms. In §3, we discuss cortical systems for the perception of facial expressions, and argue for a partial segregation of function in the superior temporal sulcus and the fusiform gyrus. In §4, we describe the current understanding of how the brain responds to emotionally neutral faces. To resolve some of the inconsistencies in the literature, we perform a large group analysis across three different studies, and argue that one parsimonious explanation of prior findings is that faces are coded in terms of their typicality. In §5, we discuss how these two lines of research--perception of emotional expressions and face evaluation--could be integrated into a common, cognitive neuroscience framework.  相似文献   

9.
Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning.  相似文献   

10.
社会认知神经科学的取向与研究进展   总被引:1,自引:0,他引:1  
社会认知神经科学是社会心理学和认知神经科学相结合的新兴多学科研究领域,其强调在社会、认知与脑神经等三个层面的交互作用上去理解心理现象。前几年主要是对刻板印象、态度与态度改变、他人知觉、自我认知以及情绪与认知交互作用等方面进行了深入研究,其主要范式是应用认知神经科学的方法来验证社会心理学在这些范围内上的各种不同的理论观点,当前的研究主要集中在知觉和再认的社会标记、社会判断和归因、评价调节知觉和经验以及社会交互作用等传统的社会心理学方面,并取得了突破性进展。展望未来的研究,其将在系统准则研究发展的基础上,把当今的社会认知研究与认知神经科学在理论和方法论上整合起来,为揭示人类高级社会心理现象的神经基础,开辟一条崭新的研究道路。  相似文献   

11.
In order to interpret and engage with the social world, individuals must understand how they relate to others. Self–other understanding forms the backbone of social cognition and is a central concept explored by research into basic processes such as action perception and empathy, as well as research on more sophisticated social behaviours such as cooperation and intergroup interaction. This theme issue integrates the latest research into self–other understanding from evolutionary biology, anthropology, psychology, neuroscience and psychiatry. By gathering perspectives from a diverse range of disciplines, the contributions showcase ways in which research in these areas both informs and is informed by approaches spanning the biological and social sciences, thus deepening our understanding of how we relate to others in a social world.  相似文献   

12.
The impact of the Internet across multiple aspects of modern society is clear. However, the influence that it may have on our brain structure and functioning remains a central topic of investigation. Here we draw on recent psychological, psychiatric and neuroimaging findings to examine several key hypotheses on how the Internet may be changing our cognition. Specifically, we explore how unique features of the online world may be influencing: a) attentional capacities, as the constantly evolving stream of online information encourages our divided attention across multiple media sources, at the expense of sustained concentration; b) memory processes, as this vast and ubiquitous source of online information begins to shift the way we retrieve, store, and even value knowledge; and c) social cognition, as the ability for online social settings to resemble and evoke real‐world social processes creates a new interplay between the Internet and our social lives, including our self‐concepts and self‐esteem. Overall, the available evidence indicates that the Internet can produce both acute and sustained alterations in each of these areas of cognition, which may be reflected in changes in the brain. However, an emerging priority for future research is to determine the effects of extensive online media usage on cognitive development in youth, and examine how this may differ from cognitive outcomes and brain impact of uses of Internet in the elderly. We conclude by proposing how Internet research could be integrated into broader research settings to study how this unprecedented new facet of society can affect our cognition and the brain across the life course.  相似文献   

13.
KBG syndrome is a neurodevelopmental disorder, caused by dominant mutations in ANKRD11, that is characterized by developmental delay/intellectual disability, mild craniofacial dysmorphisms, and short stature. Behavior and cognition have hardly been studied, but anecdotal evidence suggests higher frequencies of ADHD‐symptoms and social‐emotional impairments. In this study, the behavioral and cognitive profile of KBG syndrome will be investigated in order to examine if and how cognitive deficits contribute to behavioral difficulties. A total of 18 patients with KBG syndrome and a control group consisting of 17 patients with other genetic disorders with comparable intelligence levels, completed neuropsychological assessment. Age‐appropriate tasks were selected, covering overall intelligence, attention, memory, executive functioning, social cognition and visuoconstruction. Results were compared using Cohen's d effect sizes. As to behavior, fewer difficulties in social functioning and slightly more attentional problems, hyperactivity, oppositional defiant behavior and conduct problems were found in the KBG syndrome group. Regarding cognitive functioning, inspection of the observed differences shows that patients with KBG syndrome showed lower scores on sustained attention, cognitive flexibility, and visuoconstruction. In contrast, the KBG syndrome group demonstrated higher scores on visual memory, social cognition and emotion recognition. The cognitive profile of KBG syndrome in this sample indicates problems in attention and executive functioning that may underlie the behavior profile which primarily comprises impulsive behavior. Contrary to expectations based on previous (case) reports, no deficits were found in social cognitive functioning. These findings are important for counseling purposes, for tailored education planning, and for the development of personalized intervention.  相似文献   

14.
Improvement in some but not all domains of cognition during treatment with the atypical antipsychotic drugs clozapine, quetiapine, olanzapine, and risperidone has been reported in some but not all studies. It has been recently suggested that these reports are an artifact, related to lessening of the impairment due to typical neuroleptic drugs and anticholinergic agents. The purpose of this study was to further test the hypothesis that olanzapine, an atypical antipsychotic drug reported to have anticholinergic properties, improves cognition in patients with schizophrenia, including domains of cognition related closely to work and social function (ie, verbal learning and memory) and that this improvement is independent of improvement in psychopathology. Thirty-four patients with schizophrenia who were partial responders to typical antipsychotic drug treatment were evaluated with a comprehensive neurocognitive battery, including measures of executive functioning; verbal and visual learning and memory; working memory; immediate, selective, and sustained attention; perceptual/motor processing; and motor skills prior to and following treatment with olanzapine for 6 weeks. The Brief Psychiatric Rating Scale (BPRS) was used to assess psychopathology in patients treated with typical antipsychotic drugs. Subjects were switched to olanzapine (average dose 13.4 mg, range 5-20 mg) and reassessed following 6 weeks and 6 months of treatment. Significant improvement was noted in 9 of 19 cognitive tests, including measures of selective attention, verbal learning and memory, and verbal fluency. No cognitive test was worsened by olanzapine treatment. Improvements in the BPRS Total and Positive Symptom Subscale scores were noted. Improvements in verbal learning and memory, sustained attention, and psychomotor tracking were independent of improvement in psychopathology. These data suggest that olanzapine improved some but not all cognitive deficits in schizophrenia, including verbal memory, a cognitive domain impaired by anticholinergic drugs. The basis for the improvement in cognitive scores, which should lead to improvement in role functioning if real, is discussed.  相似文献   

15.
Cognitive impairment in the elderly, caused by either normal ageing process or dementia, is an increasing problem in developed countries that has enormous social and economic considerations. Research investigating the genetic basis of cognition is a new and rapidly developing field that may aid in the development of new treatments for age-related cognitive deficit. Over the past 6 years, a number of quantitative trait loci (QTLs) have been associated with cognitive functioning in humans including loci within the genes catechol- o -methyltransferase, brain-derived neurotrophic factor, muscle segment homeobox 1, serotonin transporter 2A (HTR2A), cholinergic muscarinic receptor 2, cathepsin D, metabotrophic glutamate receptor and most recently the class II human leukocyte antigens. Unfortunately, inconsistency within the literature, which is a hallmark of almost all association studies investigating complex diseases and traits, is casting doubt as to which genes are truly associated with cognition and which are a result of Type 2 error. This review will highlight implicated intelligence QTLs, examine the probable reasons for the current discrepancies between reports and discuss the potential advantages that may be procured from the study of cognitive genetics.  相似文献   

16.
社会神经科学是研究人类的社会行为及其神经机制的综合性学科.从1992年学科成立至今,社会神经科学研究取得了丰硕的成果.本文系统介绍了该领域4个主要研究方向:社会知觉、社会认知、社会调节和社会互动的研究成果,并在此基础上总结了各研究方向的核心问题,即社会知觉加工的模块化问题、人类社会认知的独特性问题和社会调节加工的跨文化一致性问题.已有研究表明,社会知觉加工至少在计算算法层面是特异化的;心智化系统是人类独有的加工模块;人类社会调节不具备跨文化的一致性;大脑间耦合可能是社会互动共有的神经机制.最后,展望了社会神经科学未来的发展方向.  相似文献   

17.
Pregnenolone belongs to a class of endogenous neurosteroids in the central nervous system (CNS), which has been suggested to enhance cognitive functions through GABAA receptor signaling by its metabolites. It has been shown that the level of pregnenolone is altered in certain brain areas of schizophrenic patients, and clozapine enhances pregnenolone in the CNS in rats, suggesting that pregnenolone could be used to treat certain symptoms of schizophrenia. In addition, early phase proof-of-concept clinical trials have indicated that pregnenolone is effective in reducing the negative symptoms and cognitive deficits of schizophrenia patients. Here, we evaluate the actions of pregnenolone on a mouse model for schizophrenia, the dopamine transporter knockout mouse (DAT KO). DAT KO mice mirror certain symptoms evident in patients with schizophrenia, such as the psychomotor agitation, stereotypy, deficits of prepulse inhibition and cognitive impairments. Following acute treatment, pregnenolone was found to reduce the hyperlocomotion, stereotypic bouts and pre-pulse inhibition (PPI) deficits in DAT KO mice in a dose-dependent manner. At 60 mg/kg of pregnenolone, there were no significant differences in locomotor activities and stereotypy between wild-type and DAT KO mice. Similarly, acute treatment of 60 mg/kg of pregnenolone fully rescued PPI deficits of DAT KO mice. Following chronic treatment with pregnenolone at 60 mg/kg, the cognitive deficits of DAT KO mice were rescued in the paradigms of novel object recognition test and social transmission of food preference test. Pregnenolone thus holds promise as a therapeutic candidate in schizophrenia.  相似文献   

18.
Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

19.
About 1 in 650 boys are born with an extra X chromosome (47,XXY or Klinefelter syndrome). 47,XXY is associated with vulnerabilities in socio‐emotional development. This study was designed to assess types of cognitive deficits in individuals with 47,XXY that may contribute to social‐emotional dysfunction, and to evaluate the nature of such deficits at various levels: ranging from basic visuospatial processing deficits, impairments in face recognition (FR), to emotion expression impairments. A total of 70 boys and men with 47,XXY, aged 8 to 60 years old, participated in the study. The subtests feature identification, FR and identification of facial emotions of the Amsterdam Neuropsychological Tasks were used. Level of intellectual functioning was assessed with the child and adult versions of the Wechsler Intelligence Scales. Reaction time data showed that in the 47,XXY group, 17% had difficulties in visuospatial processing (no social load), 26% had difficulties with FR (medium social load) and an even higher number of 33% had difficulties with facial expressions of emotions (high‐social load). Information processing impairments increased as a function of “social load” of the stimuli, independent of intellectual functioning. Taken together, our data suggest that on average individuals with XXY may have more difficulties in information processing when “social load” increases, suggesting a specific difficulty in the higher‐order labeling and interpretation of social cues, which cannot be explained by more basic visuospatial perceptual skills. Considering the increased risk for social cognitive impairments, routine assessment of social cognitive functioning as part of neuropsychological screening is warranted.  相似文献   

20.
I describe an integrative social‐evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co‐opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness‐enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness‐reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self‐oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under‐developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively ‘hyper‐developed’ social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint effects partially mediate risks and phenotypes of autism and psychotic‐affective conditions. These considerations have direct implications for the development of therapies for alleviating disorders of social cognition, and for understanding how such disorders are associated with the evolution of human cognitive‐affective architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号