首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新烟碱类杀虫剂对蜜蜂健康的影响   总被引:2,自引:0,他引:2  
新烟碱类杀虫剂(neonicotinoid insecticides),是目前全球应用最为广泛的一类杀虫剂,它能够通过导管运输方式扩散到植物各个组织中,并与昆虫乙酰胆碱受体结合,从而发挥剧烈的神经毒害效应。蜜蜂作为自然界最主要的传粉者,具有重要的经济和生态价值。近年来,蜜蜂等授粉昆虫数量大规模的骤减引起了各界极大关注。虽然具体原因尚未定论,但新烟碱类杀虫剂对它们的影响已被广泛认可。本文综述了新烟碱类杀虫剂及其对蜜蜂的致死和亚致死效应,并阐述了不同国家和地区相关针对性的举措。通过总结国内外有关新烟碱类杀虫剂与蜜蜂健康的研究形势,以期为我国开展相关具体研究提供参考。  相似文献   

2.
The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.  相似文献   

3.
The low mammalian toxicity of neonicotinoid insecticides has been shown to be attributable, at least in part, to their selective actions on insect nicotinic acetylcholine receptors (nAChRs). There are multiple nAChRs in insects and a wealth of neonicotinoid chemicals. Studies to date have discribed a wide range of effects on nAChRs, notably partial agonist, super agonist and antagonist actions. Both the diversity of the neonicotinoid actions and their selectivity for insect over vertebrate nAChRs are the result of physicochemical and steric interactions at their molecular targets (nAChRs). In such interactions, the formation and breakage of hydrogen bond (HB) networks plays a key role. Therefore the loss or gain of even a single HB resulting from either structural changes in neonicotinoids, or the amino acid sequence of a particular nAChR subunit, could result in a drastic modification of neonicotinoid actions. In addition to the amino acid residues, the backbone carbonyl of nAChRs may also be involved in the formation of HB networks with neonicotinoids.  相似文献   

4.
Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in both vertebrates and invertebrates. In insects, nAChRs are the target site for several naturally occurring and synthetic compounds that exhibit potent insecticidal activity. Several compounds isolated from plants are potent agonists or antagonists of nAChRs, suggesting that these may have evolved as a defence mechanism against insects and other herbivores. Nicotine, isolated from the tobacco plant, has insecticidal activity and has been used extensively as a commercial insecticide. Spinosad, a naturally occurring mixture of two macrocyclic lactones isolated from the microorganism Saccharopolyspora spinosa, acts upon nAChRs and has been developed as a commercial insecticide. Since the early 1990s, one of the most widely used and rapidly growing classes of insecticides has been the neonicotinoids. Neonicotinoid insecticides are potent selective agonists of insect nAChRs and are used extensively in both crop protection and animal health applications. As with other classes of insecticides, there is growing evidence for the evolution of resistance to insecticides that act on nAChRs.  相似文献   

5.
Pesticides are substances that have been widely used throughout the world to kill, repel, or control organisms such as certain forms of plants or animals considered as pests. Depending on their type, dose, and persistence in the environment, they can have impact even on non-target species such as beneficial insects (honeybees) in different ways, including reduction in their survival rate and interference with their reproduction process. Honeybee Apis mellifera is a major pollinator and has substantial economical and ecological values. Colony collapse disorder (CCD) is a mysterious phenomenon in which adult honeybee workers suddenly abandon from their hives, leaving behind food, brood, and queen. It is lately drawing a lot of attention due to pollination crisis as well as global agriculture and medical demands. If the problem of CCD is not resolved soon enough, this could have a major impact on food industry affecting world’s economy a big time. Causes of CCD are not known. In this overview, I discuss CCD, biogenic amines-based-pesticides (neonicotinoids and formamidines), and their disruptive effects on biogenic amine signaling causing olfactory dysfunction in honeybees. According to my hypothesis, chronic exposure of biogenic amines-based-pesticides to honeybee foragers in hives and agricultural fields can disrupt neural cholinergic and octopaminergic signaling. Abnormality in biogenic amines-mediated neuronal signaling impairs their olfactory learning and memory, therefore foragers do not return to their hive – a possible cause of CCD. This overview is an attempt to discuss a hypothetical link among biogenic amines-based pesticides, olfactory learning and memory, and CCD.  相似文献   

6.
Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes.  相似文献   

7.
Social insects present unique challenges to chemically based management strategies, especially because fast‐acting compounds commonly applied for many pest insects may not be the most effective for colony elimination. The reproductive caste of a colony is the most protected from direct damage by insecticides, and compounds that cause rapid mortality among foragers frequently do not impact the reproductive members or even markedly reduce overall colony size. With recent bans on persistent insecticides that previously have been used to control social insects, especially termites, new compounds must be used. Island and coastal ecosystems are particularly sensitive to the effects of widespread pesticide use and concerns about unintentional water pollution and runoff are common, and international attention is being paid to developing sustainable pesticide options for agricultural and urban pest insects in particularly sensitive environments. Given the precarious status of many native insects and arthropods care must be taken to minimize exposure to potentially harmful insecticides and the non‐target impacts of these chemicals. However, recent developments in the synthesis and discovery of highly selective insecticides with low mammalian and non‐target toxicity provide viable alternatives to the broad‐spectrum persistent organochlorine insecticides that have been largely deregistered. Novel technologies, particularly synthetic analogues of biologically active compounds, yield new chemical control options and management strategies for island and other sensitive ecosystems; case studies from Australia, the Galapagos Islands and New Zealand highlight current challenges and successes.  相似文献   

8.
Systemic insecticides such as neonicotinoids and fipronil are widely applied in rice production. These insecticides have been suspected of reducing biodiversity in paddy ecosystems and reducing wild dragonfly populations in Japan. Conventional ecotoxicological risk assessment could not confirm this, as it has not considered interspecific variation in sensitivity to insecticides. We estimated the median effect concentration (EC50) of 15 systemic insecticides to first instar nymphs of a Japanese damselfly, Ischnura senegalensis (Rambur) (Odonata: Coenagrionidae), commonly found in rice paddy fields. Damselflies were found to be highly sensitive to pyrethroid pesticides, less so to phenylpyrazole, organophosphates, and carbamates, and least sensitive to neonicotinoids, nereistoxin, and diamide. Given the acute toxicity data, the sensitivity of the damselfly to neonicotinoids was considered to be lower than that of other aquatic insects, whereas the EC50 values of the damselfly were 2–3 orders lower than that of Daphnia magna Straus (Diplostraca: Daphniidae), which is a standard test species. These results indicate that the conventional ecological risk assessment based on acute toxicity data of D. magna would underestimate the impact of neonicotinoids on Odonata diversity in paddy ecosystems. We therefore recommend using the paddy-dwelling damselfly as a new test species for insecticide bioassay.  相似文献   

9.
In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers'' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.  相似文献   

10.
This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control.

This study presents a barcoding strategy that enables high-throughput phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and applies this to the discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector.  相似文献   

11.
Mechanisms of resistance to pyrethroid insecticides   总被引:1,自引:0,他引:1  
In the 10 years or so since the photostable pyrethroid insecticides such as permethrin and fenvolerate were introduced, this family of compounds has become widely used to control agricultural pests, and finds increasing usage to control arthropods of medical and veterinary importance. The synthetic pyrethroids offer many advantages for veterinary and public health use, particularly their selectivity, high toxicity to insects, and relative lack of chronic effects. They are also inherently stable, and so have become widely used as residual sprays on house walls to control insects in the domestic environment. But as with other classes of insecticides such as organochlorines, organophosphotes and carbamates, resistance to pyrethroids is now increasingly reported. In this article, Tom Miller explains the principle mechanisms of resistance to pyrethroids, using the North American horn fly (Haematobia irritans) as an example now showing many common resistance traits.  相似文献   

12.
杀虫药剂的神经毒理学研究进展   总被引:23,自引:1,他引:23  
伍一军  冷欣夫 《昆虫学报》2003,46(3):382-389
大多数杀虫药剂都具有较强的神经毒性,它们对神经系统的作用靶标不同。有机磷类杀虫剂不仅抑制乙酰胆碱酯酶活性和乙酰胆碱受体功能,影响乙酰胆碱的释放,而且还具有非胆碱能毒性,有些有机磷杀虫剂还能引发迟发性神经毒性。新烟碱类杀虫剂作为烟碱型乙酰胆碱受体(nAChR)的激动剂,作用于该类受体的α亚基;它对昆虫的毒性比对哺乳动物的毒性大得多,乃是因为它对昆虫和哺乳动物nAChR的作用位点不同。拟除虫菊酯类杀虫剂主要作用于神经细胞钠通道,引起持续开放,导致传导阻滞;该类杀虫剂也可抑制钙通道。另外,这类杀虫剂还干扰谷氨酸递质和多巴胺神经元递质的释放。拟除虫菊酯类杀虫剂对昆虫的选择毒性很可能是因为昆虫神经元的钠通道结构与哺乳动物的不同。阿维菌素类杀虫剂主要作用于γ-氨基丁酸(GABA)受体,它能促进GABA的释放,增强GABA与GABA受体的结合,使氯离子内流增加,导致突触后膜超级化。由于这类杀虫剂难以穿透脊椎动物的血脑屏障而与中枢神经系统的GABA受体结合,故该类杀虫剂对脊椎动物的毒性远低于对昆虫的毒性。多杀菌素类杀虫剂可与中枢神经系统的nAChR作用,引起Ach长时间释放,此外,这类杀虫剂还可作用于昆虫的GABA受体,改变GABA门控氯通道的功能。  相似文献   

13.
The Colorado potato beetle (Leptinotarsa decemlineata) is a major agricultural pest of solanaceous crops. An effective management strategy employed by agricultural producers to control this pest species is the use of systemic insecticides. Recent emphasis has been placed on the use of neonicotinoid insecticides. Despite efforts to curb resistance development through integrated pest management approaches, resistance to neonicotinoids in L. decemlineata populations continues to increase. One contributing factor may be alterations in insect fatty acids, which have multiple metabolic functions and are associated with the synthesis of xenobiotic-metabolizing enzymes to mitigate the effects of insecticide exposure. In this study, we analyzed the fatty acid composition of L. decemlineata populations collected from an organic production field and from a commercially managed field to determine if fatty acid composition varied between the two populations. We demonstrate that a population of L. decemlineata that has a history of systemic neonicotinoid exposure (commercially managed) has a different lipid composition and differential expression of known metabolic detoxification mechanisms relative to a population that has not been exposed to neonicotinoids (organically managed). The fatty acid data indicated an upregulation of Δ6 desaturase in the commercially managed L. decemlineata population and suggest a role for eicosanoids and associated metabolic enzymes as potential modulators of insecticide resistance. We further observed a pattern of delayed emergence within the commercially managed population compared with the organically managed population. Variations in emergence timing together with specific fatty acid regulation may significantly influence the capacity of L. decemlineata to develop insecticide resistance.  相似文献   

14.
Armored scale insects are among the most difficult to manage and economically important arthropod pests in the production and maintenance of urban landscape plants. This is because of morphological traits that protect them from contact insecticides. I compared initial and season-long control of euonymus scale, Unaspis euonymi Comstock (Hemiptera: Diaspidae), by reduced-risk insecticides (insect growth regulators [IGRs], neonicotinoids, spirotetramat) to determine if they controlled scale as well as more toxic insecticides such as the organophosphate, acephate, and pyrethroid, bifenthrin. I also evaluated how these insecticides affected natural enemy abundance on experimental plants and survival when exposed to insecticide residue. All insecticides tested reduced first generation euonymus scale abundance. In 2009, reinfestation by second generation euonymus scale was highest on plants treated with acetamiprid and granular dinotefuran. In 2010, systemic neonicotinoids and spirotetramat prevented cottony cushion scale infestation 133 d after treatment whereas scale readily infested plants treated with bifenthrin and horticultural oil. Encarsia spp. and Cybocephalus spp. abundance was related to scale abundance. These natural enemies were generally less abundant than predicted by scale abundance on granular dinotefuran treated plants and more abundant on granular thiamethoxam treated plants. Bifenthrin residue killed 90-100% of O. insidiosus and E. citrina within 24 h. My results indicate that reduced risk insecticides can provide season-long scale control with less impact on natural enemies than conventional insecticides. This could have economic and environmental benefits by reducing the number of applications necessary to protect nursery and landscape plants from scale.  相似文献   

15.
《Journal of Asia》2020,23(2):477-482
Imidacloprid, one of the most commonly used insecticides, is highly toxic to honeybees and other beneficial insects. Imidacloprid is a chloronicotinyl insecticide, which has a highly specific affinity to the nicotinic acetylcholine receptors (nAChRs) in the honeybee’s nervous system. So it may interfere with dance behavior and memory formation. We found the waggle dances were modulated in honeybees fed sucrose water containing imidacloprid (pesticide group) compared to those fed normal sucrose water (control group). In our data, dancers of the pesticide group significantly increased the variance of divergence angle and the return phases in waggle dances than the control group. And the dance followers in pesticide group significantly increased the variance of crop content than the control group. Furthermore, four learning and memory related genes were significantly regulated at the gene expression levels between pesticide and control group. Our data revealed that the sub-lethal dose of imidacloprid impaired the honeybees’ learning and memory and resulted in cognitive disorder. The dancers may adjust their recruitment behavior leading to the observed reduced number of followers. We conclude that modulation of in-hive communication serves to protect the colony from foraging toxic food.  相似文献   

16.
  1. Neonicotinoid-coated corn and soybean seeds are a common crop in Canada and the US. A growing body of research is demonstrating that, through various exposure routes, neonicotinoids can impact a suite of nontarget organisms including beneficial insects such as bees. However, to date, only a few studies have examined the effects of neonicotinoids in field settings.
  2. We assessed the relationship between agricultural crop soil neonicotinoid levels and wild bee abundance and diversity at 16 agricultural sites representing different soil neonicotinoid levels. We detected clothianidin at 11 sites, thiamethoxam at three sites; imidacloprid was not detected.
  3. Hedgerow and crop soils were consistent in terms of where clothianidin was detected; thiamethoxan was not detected in hedgerow soils. Based on model outcomes, fields with higher levels of soil neonicotinoids exhibited significantly lower wild bee abundance and diversity than those with low or no neonicotinoids detected.
  4. Crop soil neonicotinoid level, hedgerow floral resource abundance and crop type were consistent predictors of bee abundance across models; only neonicotinoid level and crop type were significant predictors of diversity.
  5. Our results are consistent with recent findings in the midwestern US, and underscore the potential risk of soil neonicotinoids to wild bee populations across regions and crop systems.
  相似文献   

17.
The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.  相似文献   

18.
It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.  相似文献   

19.
20.
The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee) and clothianidin (0.05-2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the understanding of how honeybees are affected by sublethal doses of insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号