首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A series of N,N′‐dibisphosphonate‐containing 1,3‐propanediamine derivatives ( L1 – L6 ) and their corresponding dichloridoplatinum(II) complexes ( 1 – 6 ) have been synthesized and characterized by elemental analysis, 1H‐NMR, 13C‐NMR, 31P‐NMR and HR‐MS spectra. The in vitro antitumor activities of compounds L1 – L6 and 1 – 6 were tested by WST‐8 assay with Cell Counting Kit‐8, indicating that platinum‐based complexes 1 – 6 showed higher cytotoxicity than corresponding ligands L1 – L6 against A549 and MG‐63, especially complex 2 which displayed comparable cytotoxicity to those of cisplatin and zoledronate after 48 h incubation. In addition, complexes 1 – 6 were more active in vitro on osteosarcoma cell line MG‐63 than normal osteoblast cell line hFOB 1.19. The structure‐activity relationship has been summarized based on the in vitro cytotoxicity of three series of platinum complexes from this and our previous studies. The in vitro bone affinity of platinum complexes was also tested by hydroxyapatite (HAP) chromatography in terms of capacity factor K′. Besides, in this paper, representative complex 2 , which has been proved to be a promising antitumor agent with high cytotoxicity and bone HAP binding property, was investigated for its mechanism of action producing cell death against MG‐63.  相似文献   

2.
Abstract

Square planar mononuclear platinum(II) complexes having general formula [Pt(Ln)Cl2], (where, Ln?=?L1–4) were synthesized with neutral bidentate heterocyclic 1,3,5-trisubstituted bipyrazole based ligands. The synthesized compounds were characterized by physicochemical method such as TGA, molar conductance, micro-elemental analysis and magnetic moment, and spectroscopic method such as, FT-IR, UV–vis, 1H NMR, 13C NMR and mass spectrometry. Biological applications of the compounds were carried out using in vitro brine shrimp lethality bioassay, in vitro antimicrobial study against five different pathogens, and cellular level cytotoxicity against Schizosaccharomyces pombe (S. Pombe) cells. Pt(II) complexes were tested for DNA interaction activities using electronic absorption titration, viscosity measurements study, fluorescence quenching technique and molecular docking assay. Binding constants (Kb) of ligands and complexes were observed in the range of 0.23–1.07?×?105?M?1 and 0.51–3.13?×?105?M?1, respectively. Pt(II) complexes (I–IV) display an excellent binding tendency to biomolecule (DNA) and possess comparatively high binding constant (Kb) values than the ligands. The DNA binding study indicate partial intercalative mode of binding in complex-DNA. The gel electrophoresis activity was carried out to examine DNA nuclease property of pUC19 plasmid DNA.  相似文献   

3.
Three new asymmetric platinum(II) complexes comprising an isopropylamine ligand trans to an azole ligand were synthesized and fully characterized by 1H NMR, 195Pt NMR, IR and elemental analysis. In addition the X-ray crystal structure of all three complexes was determined. The reaction kinetics of the complexes with DNA model base guanosine-5′-monophosphate (GMP) was studied, revealing reaction kinetics comparable to cisplatin. To gain insight in the complexes as potential antitumor agents, cytotoxicity assays were performed on a variety of human tumor cell lines. These assays showed the complexes all to possess cytotoxicity profiles comparable to cisplatin. Furthermore, the complexes largely retain their activity in a human ovarian carcinoma cell line resistant to cisplatin, A2780R, compared to the cisplatin sensitive parent cell line A2780. These results are of fundamental importance, illustrating how platinum complexes of trans geometry can show improved activity compared to cisplatin in both cisplatin sensitive and cisplatin resistant cell lines.  相似文献   

4.
Many ruthenium(II) complexes show high antitumor activities, and the in vitro antitumor activities are usually related to DNA binding. We designed and synthesized two RuII polypyridyl complexes, [Ru(dmp)2(fpp)]2+ (dmp=2,9‐dimethyl‐1,10‐phenanthroline; fpp=2‐[3,4‐(difluoromethylenedioxy)phenyl]imidazo[4,5‐f] [1,10]phenanthroline and [Ru(phen)2(fpp)]2+ (phen=1,10‐phenanthroline). The DNA‐binding properties of these complexes have been investigated by spectroscopic titration, DNA melting experiments, viscosity measurements, and photoactivated cleavage. The mechanism studies of photocleavage revealed that singlet oxygen (1O2) and superoxide anion radical (O$\rm{{_{2}^{{^\cdot} -}}}$ ) may play an important role in the photocleavage. The cytotoxicity of complexes 1 and 2 have been evaluated by MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) method; complex 2 shows slightly higher anticancer potency than 1 does against all the cell lines screened.  相似文献   

5.
A series of twelve novel diamminetetrakis(carboxylato)platinum(IV) and 18 novel bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) complexes with mixed axial carboxylato ligands was synthesized and characterized by multinuclear 1H‐, 13C‐, 15N‐, and 195Pt‐NMR spectroscopy. Their cytotoxic potential was evaluated (by MTT assay) against three human cancer cell lines derived from ovarian teratocarcinoma (CH1/PA‐1), lung (A549), and colon carcinoma (SW480). In the cisplatin‐sensitive CH1/PA‐1 cancer cell line, diamminetetrakis(carboxylato)platinum(IV) complexes showed IC50 values in the low micromolar range, whereas, for the most lipophilic compounds of the bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) series, IC50 values in the nanomolar range were found.  相似文献   

6.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

7.
The aim of this study was synthesis of two new water-soluble fluorescent palladium and platinum complexes with formulas of [Pt(DACH)(FIP)](NO3)2 and [Pd(DACH)(FIP)](NO3)2, respectively, where FIP is 2-(furan-2-yl)-1H-imidazo[4,5-f][1,10] phenanthroline and DACH is 1R,2R-diaminocyclohexane. Fluorescence spectroscopy, circular dichroism (CD), thermal denaturation measurement, ionic strength, and kinetic study displayed groove binding of Pt complex on DNA, while due to binding of Pd complex, B form of DNA convert to Z form. Due to electrostatic interaction of Pd complex with DNA, the DNA form is converted and it provides enough space for Pd complex to insert between base stacking of DNA. UV–vis study shows two complexes could denature the DNA at low concentrations in exothermic process and Pt complex is more active than Pd complex. Finally, the anticancer and growth inhibitory activities of synthesized complexes were investigated against human colon cancer cell line HCT116 after incubation time of 24 h using MTT assay and higher activity was observed for the platinum complex. Interaction of the two metal derivative complexes was studied by molecular docking and molecular dynamics simulation. The results showed that Pt complexes have higher negative docking energy and higher tendency for interaction with DNA, and exert more structural change on DNA.  相似文献   

8.
A new neo‐clerodane diterpenoid, barbatin H ( 1 ), together with fifteen known analogues ( 2 – 16 ) were isolated from Scutellaria barbata D.Don . Their structures were determined on the basis of NMR and HR‐MS spectral analysis and comparison with the reported data. All of those compounds were comparatively predicted for their cytotoxic activities against four human tumor cell lines, i. e. LoVo (colon cancer), MCF‐7 (breast cancer), SMMC‐7721 (hepatoma cancer), and HCT‐116 (colon cancer) cells by MTT method in vitro. The results turned out that the series of neo‐clerodane diterpenoids exhibited varying degrees of cytotoxic activities against the growth of the tested tumor cell lines, and most of them exhibited selective cytotoxicity against LoVo cell lines. Scutebata A ( 14 ) showed significant cytotoxic activities against four tested tumor cells with IC50 values of 4.57, 7.68, 5.31, and 6.23 μm , respectively, which indicated that it might be a potential chemotherapeutic agent.  相似文献   

9.
Colchicine is a tubulin‐binding natural product isolated from Colchicum autumnale. Here we report the in vitro anticancer activity of C‐ring modified semi‐synthetic derivative of colchicine; N‐[(7S)‐1,2,3‐trimethoxy‐9‐oxo‐10‐(4‐phenyl‐piperidin‐1‐yl)‐5,6,7,9 tetrahydrobenzo[a]heptalen‐7‐yl]acetamide ( 4h ) on colon cancer HCT‐116 cell line. The compound 4h was screened for anti‐proliferative activity against different human cancer cell lines and was found to exhibit higher cytotoxicity against colon cancer cell lines HCT‐116 and Colo‐205 with IC50 of 1 and 0.8 μM respectively. Cytotoxicity of the compound to the normal fR2 breast epithelial cells and normal HEK293 human embryonic kidney cells was evaluated in concentration and time‐dependent manner to estimate its selectivity for cancer cells which showed much better selectivity than that of colchicine. Compound 4h induced cell death in HCT‐116 cells by activating apoptosis and autophagy pathways. Autophagy inhibitor 3‐MA blocked the production of LC3‐II and reduced the cytotoxicity in response to 4h , but did not affect apoptosis, suggesting thereby that these two were independent events. Reactive oxygen species scavenger ascorbic acid pretreatment not only decreased the reactive oxygen species level but also reversed 4h induced cytotoxicity. Treatment with compound 4h depolymerized microtubules and the majority of cells arrested at the G2/M transition. Together, these data suggest that 4h has better selectivity and is a microtubule depolymerizer, which activates dual cell‐death machineries, and thus, it could be a potential novel therapeutic agent in cancer therapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In the investigation of Meehania fargesii, eighteen triterpenoids were isolated and identified, including a previously unknown compound with an 13,27-cycloursane skeleton, using techniques like 1D and 2D NMR, and HR-MS. Furthermore, the cytotoxicity of these compounds were evaluated against HCT116, MCF-7, and AGS cell lines using the CCK-8 method to examine their structure–activity relationship. Remarkably, compounds 13 and 16 exhibited higher cytotoxicity across all three cell lines compared to the positive drug. Western blot analysis revealed that these compounds activated apoptosis in HCT116 cells by promoting the Bax protein and inhibiting the Bcl-2 protein. This suggests that compounds 13 and 16 have potential as apoptosis-inducing agents in HCT116 cells.  相似文献   

11.
The mononuclear dipeptide‐based CuII complexes [CuII(trp‐phe)(phen)(H2O)] ⋅ ClO4 ( 1 ) and [CuII(trp‐phe)(bpy)(H2O)] ⋅ ClO4 ( 2 ) (trp‐phe=tryptophanphenylalanine, phen=1,10‐phenanthroline, bpy=2,2′‐bipyridine) were isolated, and their interaction with DNA was studied. They exhibit intercalative mode of interaction with DNA. The intercalative interaction was quantified by Stern Volmer quenching constant (Ksq=0.14 for 1 and 0.08 for 2 ). The CuII complexes convert supercoiled plasmid DNA into its nicked circular form hydrolytically at physiological conditions at a concentration as low as 5 μM (for 1 ) and 10 μM (for 2 ). The DNA hydrolysis rates at a complex concentration of 50 μM were determined as 1.74 h−1 (R=0.985) for 1 and 0.65 h−1 (R=0.965) for 2 . The rate enhancement in the range of 2.40–4.10×107‐fold compared to non‐catalyzed double‐stranded DNA is significant. This was attributed to the presence of a H2O molecule in the axial position of the Cu complexes.  相似文献   

12.
13.
14.
Seven new platinum(II) complexes (1–7) of triethylphosphine (Et3P) and thiones (L) with general formula, cis-[Pt(Et3P)2(L)2]Cl2 were prepared and characterized by elemental analysis, FTIR and NMR (1H, 13C & 31P) measurements. The analytical and spectroscopic data suggested the formation of the desired complexes. The complexes were tested for in vitro cytotoxicity against four cell lines: Hela (human cervical adenocarcinoma), MCF-7 (human breast carcinoma), A549 (human lung carcinoma), and HTC15 (human colon carcinoma). The anticancer activity values of compounds 1–6 are much better than cisplatin and carboplatin as indicated by their IC50 values.  相似文献   

15.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

16.
The square planar Pt(II) complexes of the type [Pt(Ln)(Cl2)] (where Ln = L1?3 = thiophene-2-carboxamide derivatives and L4?6 = thiophene-2-carbothioamide derivatives) have been synthesized and characterized by physicochemical and various spectroscopic studies. MIC method was employed to inference the antibacterial potency of complexes in reference to free ligands and metal salt. Characteristic binding constant (Kb) and binding mode of complexes with calf thymus DNA (CT-DNA) were determined using absorption titration (0.76–1.61 × 105 M?1), hydrodynamic chain length assay and fluorescence quenching analysis, deducing the partial intercalative mode of binding. Molecular docking calculation displayed free energy of binding in the range of –260.06 to –219.63 kJmol?1. The nuclease profile of complexes towards pUC19 DNA shows that the complexes cleave DNA more efficiently compared to their respective metal salt. Cytotoxicity profile of the complexes on the brine shrimp shows that all the complex exhibit noteworthy cytotoxic activity with LC50 values ranging from 7.87 to 15.94 μg/mL. The complexes have been evaluated for cell proliferation potential in human colon carcinoma cells (HCT 116) and IC50 value of complexes by MTT assay (IC50 = 125–1000 μg/mL).  相似文献   

17.
A series of chalcones containing naphthalene moiety 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure–activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.  相似文献   

18.
New trans-[Pd(sac)2(PPhMe2)(DMSO)]·H2O (Pd) and trans-[Pt(sac)2(PPhMe2)2]·H2O (Pt) complexes (sac = saccharinate and PPhMe2 = dimethylphenylphosphine) were synthesized and characterized by elemental analysis, IR, NMR, ESI-MS spectral analyses and X-ray diffraction. The complexes were evaluated for their in vitro cytotoxicity against breast (MCF-7), colon (HCT116) and lung (A549) human cancer cell lines. The ATP viability assay displayed that Pd was biologically inactive, but Pt showed significant anticancer potency on MCF-7 cancer cells, similar to cisplatin. The results suggested that Pt targeted DNA, whereas Pd displayed higher binding affinity towards human serum albumin (HSA). Mechanism of action studies of Pt suggested apoptotic cell death due to significant increase in intracellular ROS (reactive oxygen species) levels, mitochondrial damage and formation of DNA double-strand breaks. Finally, this work represents a new example of potent transplatin anticancer complexes.  相似文献   

19.
Three new sesquiterpenoids, 4α‐hydroxyeudesm‐11(13)‐en‐12‐yl 3‐methylbutanoate ( 1 ), diaspanolide E ( 2 ), and (13α)‐germacra‐1(10),4‐dien‐12,8α‐olid‐15‐oic acid ( 3 ), along with eight known sesquiterpenoids ( 4 – 11 ), were isolated from the aerial parts of Ainsliaea henryi. The chemical structures of compounds 1 – 3 were elucidated by spectroscopic analysis (1D‐, 2D‐NMR, MS and HR/MS). All isolates were evaluated for their inhibitory activities against nitric oxide (NO) production in lipopolysaccharide‐induced RAW264.7 macrophage cells. Compound 10 exhibited significantly inhibition against NO release with an IC50 value of 6.54 ± 0.16 μm . Also, all isolated compounds were tested for cytotoxicity against three human tumor cell lines A549, MGC803, and HCT116, among which compound 5 significantly inhibited the proliferation of MGC803 cell lines with an IC50 value of 2.2 ± 0.2 μm .  相似文献   

20.
 The interaction of the new antitumor-active platinum organoamide complexes [Pt{N(p–HC6F4)CH2}2(py)2] and [Pt{N(C6F5)CH2}2(py)2] (py = pyridine) with small G-containing (oligo)nucleotides [GMP, d(GpG)] has been studied to establish whether or not these compounds can bind to DNA in an analogous manner to cisplatin. The reaction products have been analyzed by 1H, 19F and 31P NMR spectroscopy. From the NMR data it is concluded that the {Pt(py)2}2+ moiety binds to the N7 position of the G base, analogously to cisplatin, with the organoamide ligand acting as the leaving group. For the GG-N7,N7 adduct, structural differences are found for the sugar conformation, compared with cisplatin. These differences may account for the activity of these new compounds in tumor cell lines resistant to cisplatin. Received: 25 September 1995 / Accepted: 7 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号