Abstract The technique used to recognise information in Magnetic Resonance Imaging (MRI) is based on electromagnetic fields. A linearly varying field (around 10?2 Tesla per meter) is added to a strong homogeneous magnetic field (order of magnitude of approximately one Tesla). When these fields are disturbed by the presence of a paramagnetic material, in the sample for instance, the resulting image is usually distorted, these distortions being termed artifacts. Our goal is to present a method, assuming the field disturbances are known, to construct the resulting images. A mathematical model of the MRI process is developed. The way the images are distorted in intensity and shape is explained and an algorithm to simulate magnetic susceptibility artifacts is deduced. 相似文献
Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture. Assessment of plaque vulnerability is of fundamental significance to cardiovascular research and disease diagnosis, prevention, treatment and management. Magnetic resonance image (MRI) data of carotid atherosclerotic plaques from 8 patients (5 male, 3 female; age: 62-83, mean=71) were acquired at the University of Washington (UW), Seattle by the Vascular Imaging Laboratory (VIL) with written informed consent obtained. Patient-specific vessel material properties were quantified using Cine MRI data for modeling use. 3D thin-layer models were used to obtain plaque stress and strain for plaque assessment. A stress-based plaque vulnerability index (SPVI) was proposed to combine mechanical analysis, plaque morphology and composition for more complete carotid plaque vulnerability assessment. The five intervals (unit: kPa) [0, 46.8), [46.8, 80), [80, 92), [92, 103), and [103, +∞) from in vivo material models were used for SPVI values of 0, 1, 2, 3 and 4, respectively. The optimized agreement rate was 85.19%. The use of patient-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations. SPVI has the potential to improve the current image-based screening and plaque vulnerability assessment schemes. 相似文献
The purpose of this study was to compare displacement behavior of cyclically loaded cadaveric human intervertebral discs as measured noninvasively on a clinical 3.0 T and a research 9.4 T MRI system. Intervertebral discs were cyclically compressed at physiologically relevant levels with the same MRI-compatible loading device in the clinical and research systems. Displacement-encoded imaging was synchronized to cyclic loading to measure displacements under applied loading with MRI (dualMRI). Displacements from the two systems were compared individually using linear regression and, across all specimens, using Bland–Altman analysis. In-plane displacement patterns measured at 3.0 T and 9.4 T were qualitatively comparable and well correlated. Bland–Altman analyses showed that over 90% of displacement values within the intervertebral disc regions of interest lay within the limits of agreement. Measurement of displacement using dualMRI using a 3.0 T clinical system is comparable to that of a 9.4 T research system. Additional refinements of software, technique implementation, and image processing have potential to improve agreement between different MRI systems. Despite differences in MRI systems in this initial implementation, this work demonstrates that dualMRI can be reliably implemented at multiple magnetic field strengths, permitting translation of dualMRI for a variety of applications in the study of tissue and biomaterial biomechanics. 相似文献
Clinical evaluations of long-term outcomes in the early-stage spinal cord injury (SCI) focus on macroscopic motor performance and are limited in their prognostic precision. This study was designed to investigate the sensitivity of the magnetic resonance imaging (MRI) indexes to the data-driven gait process after SCI. Ten adult female rhesus monkeys were subjected to thoracic SCI. Kinematics-based gait examinations were performed at 1 (early stage) and 12 (chronic stage) months post-SCI. The proportion of stepping (PS) and gait stability (GS) were calculated as the outcome measures. MRI metrics, which were derived from structural imaging (spinal cord cross-sectional area, SCA) and diffusion tensor imaging (fractional anisotropy, FA; axial diffusivity, λ//), were acquired in the early stage and compared with functional outcomes by using correlation analysis and stepwise multivariable linear regression. Residual tissue SCA at the injury epicenter and residual tissue FA/remote normal-like tissue FA were correlated with the early-stage PS and GS. The extent of lesion site λ///residual tissue λ// in the early stage after SCI was correlated with the chronic-stage GS. The ratios of lesion site λ// to residual tissue λ// and early-stage GS were predictive of the improvement in the PS at follow-up. Similarly, the ratios of lesion site λ// to residual tissue λ// and early-stage PS best predicted chronic GS recovery. Our findings demonstrate the predictive power of MRI combined with the early data-driven gait indexes for long-term outcomes. Such an approach may help clinicians to predict functional recovery accurately. 相似文献
Imaging follicular development has advanced notably from the invasive—laparotomy—to the relatively noninvasive—laparoscopy
(making frequent observations over a single cycle possible)—to totally noninvasive approaches such as ultrasonography and
magnetic resonance imaging (MRI). Now we can identify the dominant preovulatory follicle (DF) in macaques by day 6 of the
menstrual cycle via laparoscopy and by day 6–8 via ultrasonography. MRI scans are remarkably correlated with histologic specimens.
We obtained axial, coronal, and sagittal ovarian images with MRI software. Moreover, we are discerning structure/function
relationships in ovarian estrogen-receptor systems using X-ray autoradiography and immunocytochemistry. We have localized
the estrogen receptor in functional corpus luteum (CL) with3H-estradiol and in germinal epithelium and granulosa cells with monoclonal antibody to the receptor. We believe that by using
a combination of the aforementioned techniques, we will be able to investigate more fully the processes of recruitment and
selection of ovarian follicles. 相似文献
Orthodontic treatment leads to changes of the temporomandibular joint (TMJ). The extent and manner of alterations are not yet clarified completely. The non-invasive diagnostic methods do not provide any precise data about the extent of alterations. The aim of the present investigation was to analyse the TMJ cartilage after orthodontic treatment with non-invasive and invasive methods.
For the present investigation, twelve 10-week-old pigs including six control animals were used. Treatment was carried out with build-ups on the molars for sagittal advancement of the mandibulae. Magnetic resonance imaging (MRI) and determination of the Ca++ and Mg++ content were carried out 4 weeks after implantation of the build-ups. Tissue samples for ion determination were taken from the posterior area of the TMJ (condyle and fossa). During condylar growth a significant increase in cartilage volume and decrease of Ca++ and Mg++ content was observed. The newly formed tissue had a water content of 80–90%. On MR images of animals with build-ups this area was visible as a bright zone with increased signal intensity.
The determined stress potential of the condylar cartilage was reduced as a result of less functional stress in the posterior area accompanied by water intake. The newly formed cartilage matrix contained significantly less Ca++ and Mg++, and cannot be defined as permanently stable cartilage. 相似文献
There is a lack of early biomarkers of intervertebral disc (IVD) degeneration. Thus, the authors developed the analysis of magnetic resonance signal intensity distribution (AMRSID) method to analyse the 3D distribution of the T2-weighted MR signal intensity within the IVD using normalised histograms, weighted centres and volume ratios. The objective was to assess the sensitivity of the AMRSID method to the segmentation process and data normalisation. Repetition of the semi-automatic segmentation by the same operator did not influence the quality of the contour or our new MR distribution parameters whereas the skills of the operator influenced only the MR distribution parameters, and the instructions given prior to the segmentation influenced both the quality of the contour and the MR distribution parameters. Bone normalisation produces an index that jointly highlights IVD and bone health, whereas cerebrospinal fluid normalisation only suppresses the effect of the acquisition gain. This robust AMRSID method has the potential to improve the diagnostic with earlier biomarkers and the prognosis of evolution. 相似文献
PurposeTo quantify B0- and B1-induced imaging artifacts of braided venous stents and to compare the artifacts to a set of laser-cut stents used in venous interventions.MethodsThree prototypes of braided venous stents with different geometries were tested in vitro. B0 field distortion maps were measured via the frequency shift using multi-echo imaging. B1 distortions were quantified using the double angle method. The relative amplitudes were calculated to compare the intraluminal alteration of B1. Measurements were repeated with the stents in three different orientations: parallel, diagonal and orthogonal to B0.ResultsAt 1.5 T, the braided stents induced a maximum frequency shift of . Signal voids were limited to a distance of 2 mm to the stent walls at an echo time of 3 ms. No substantial difference in the B0 field distortions was seen between laser-cut and braided venous stents. maps showed strongly varying distortion patterns in the braided stents with the mean intraluminal ranging from in prototype 1 to in prototype 2. Compared to laser-cut stents the braided stents showed a 5 to 9 times higher coefficient of variation of the intraluminal .ConclusionBraided venous stent prototypes allow for MR imaging of the intraluminal area without substantial signal voids due to B0-induced artifacts. Whereas B1 is attenuated homogeneously in laser-cut stents, the B1 distortion in braided stents is more inhomogeneous and shows areas with enhanced amplitude. This could potentially be used in braided stent designs for intraluminal signal amplification. 相似文献
Acute nodularin-induced hepatotoxicity was assessed in vivo, in rats using magnetic resonance (MR) techniques, including MR imaging (MRI), MR spectroscopy (MRS), and electron paramagnetic resonance (EPR) oximetry. Nodularin is a cyclic hepatotoxin isolated from the cyanobacterium Nodularia spumigena. Three hours following the intraperitoneal (i.p.) administration of nodularin (LD50), a region of 'damage', characterized by an increase in signal intensity, was observed proximal to the porta hepatis (PH) region in T2-weighted MR images of rat liver. Image analysis of these regions of apparent 'damage' indicated a statistically significant increase in signal intensity around the PH region following nodularin administration, in comparison with controls and regions peripheral to the PH region. An increase in signal intensity was also observed proximal to the PH region in water chemical shift selective images (CSSI) of nodularin-treated rat livers, indicating that the increased signal observed by MRI is an oedematous response to the toxin. Microscopic assessment (histology and electron microscopy) and serum liver enzyme function tests (aminotransferase (ALT) and aspartate ALT (AST)) confirmed the nodularin-induced tissue injury observed by MRI. In vivo and in vitro MRS was used to detect alterations in metabolites, such as lipids, Glu+Gln, and choline, during the hepatotoxic response (2-3 h post-exposure). Biochemical assessment of perchloric acid extracts of nodularin-treated rat livers were used to confirm the MRS results. In vivo EPR oximetry was used to monitor decreasing hepatic pO2 (approximately 2-fold from controls) 2-3 h following nodularin exposure. In vivo MR techniques (MRI, MRS and EPR oximetry) are able to highlight effects that may not have been evident in single end point studies, and are ideal methods to follow tissue injury progression in longitudinally, increasing the power of a study through repeated measures, and decreasing the number of animals to perform a similar study using histological or biochemical techniques. 相似文献
In vivo decay rates of a nitroxyl contrast agent were estimated by a MR redox imaging (MRRI) technique and compared with the decay rates obtained by the electron paramagnetic resonance spectroscopy (EPRS) and imaging (EPRI). MRRI is a dynamic imaging technique employing T1-weighted pulse sequence, which can visualise a nitroxyl-induced enhancement of signal intensity by T1-weighted contrast. EPR techniques can directly measure the paramagnetic nitroxyl radical. Both the squamous cell carcinoma (SCC) tumour-bearing and normal legs of a female C3H mouse were scanned by T1-weighted SPGR sequence at 4.7 T with the nitroxyl radical, carbamoyl-proxyl (CmP), as the contrast agent. Similarly, the time course of CmP in normal muscle and tumour tissues was obtained using a 700-MHz EPR spectrometer with a surface coil. The time course imaging of CmP was also performed by 300?MHz CW EPR imager. EPRS and EPRI gave slower decay rates of CmP compared to the MRRI. Relatively slow decay rate at peripheral region of the tumour tissues, which was found in the image obtained by MRRI, may contribute to the slower decay rates observed by EPRS and/or the EPRI measurements. To reliably determine the tissue redox status from the reduction rates of nitroxyls such as CmP, heterogenic structure in the tumour tissue must be considered. The high spatial and temporal resolution of T1-weighted MRI and the T1-enhancing capabilities of nitroxyls support the use of this method to map tissue redox status which can be a useful biomarker to guide appropriate treatments based on the tumour microenvironment. 相似文献
Most of the choices we make have uncertain consequences. In some cases the probabilities for different possible outcomes are precisely known, a condition termed "risky". In other cases when probabilities cannot be estimated, this is a condition described as "ambiguous". While most people are averse to both risk and ambiguity1,2, the degree of those aversions vary substantially across individuals, such that the subjective value of the same risky or ambiguous option can be very different for different individuals. We combine functional MRI (fMRI) with an experimental economics-based method3 to assess the neural representation of the subjective values of risky and ambiguous options4. This technique can be now used to study these neural representations in different populations, such as different age groups and different patient populations.In our experiment, subjects make consequential choices between two alternatives while their neural activation is tracked using fMRI. On each trial subjects choose between lotteries that vary in their monetary amount and in either the probability of winning that amount or the ambiguity level associated with winning. Our parametric design allows us to use each individual''s choice behavior to estimate their attitudes towards risk and ambiguity, and thus to estimate the subjective values that each option held for them. Another important feature of the design is that the outcome of the chosen lottery is not revealed during the experiment, so that no learning can take place, and thus the ambiguous options remain ambiguous and risk attitudes are stable. Instead, at the end of the scanning session one or few trials are randomly selected and played for real money. Since subjects do not know beforehand which trials will be selected, they must treat each and every trial as if it and it alone was the one trial on which they will be paid. This design ensures that we can estimate the true subjective value of each option to each subject. We then look for areas in the brain whose activation is correlated with the subjective value of risky options and for areas whose activation is correlated with the subjective value of ambiguous options. 相似文献
Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with “recombinant 4 syndrome”. This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements. 相似文献
Hepatitis C virus (HCV) affects 2–3% of the global population. Approximately one-quarter of acute infections cause chronic hepatitis that leads to liver cirrhosis or hepatocellular carcinoma. The major obstacle of current research is the extremely narrow host tropism of HCV. A single HCV strain can replicate in the Huh7 human hepatoma cell line. Huh7 cells can be adapted under selective pressure in vitro to identify host factors that influence viral replication. Here, we extended this strategy to the in vivo condition and generated a series of cell lines by multiple rounds of adaptation in immunocompromised mice. Adaptation increased the cellular resistance to HCV infection. Microarray analyses revealed that the expression levels of several genes were associated with HCV resistance. Notably, up-regulation of the mRNA encoding cysteine-rich secretory protein 3 (CRISP3), a glycoprotein with unknown function that is secreted from multiple exocrine glands, was correlated with HCV resistance. The presence of CRISP3 in the culture medium limited HCV replication at the early phase of infection. 相似文献
We present a method for comparing the uptake of the brain''s two key energy substrates: glucose and ketones (acetoacetate [AcAc] in this case) in the rat. The developed method is a small-animal positron emission tomography (PET) protocol, in which 11C-AcAc and 18F-fluorodeoxyglucose (18F-FDG) are injected sequentially in each animal. This dual tracer PET acquisition is possible because of the short half-life of 11C (20.4 min). The rats also undergo a magnetic resonance imaging (MRI) acquisition seven days before the PET protocol. Prior to image analysis, PET and MRI images are coregistered to allow the measurement of regional cerebral uptake (cortex, hippocampus, striatum, and cerebellum). A quantitative measure of 11C-AcAc and 18F-FDG brain uptake (cerebral metabolic rate; μmol/100 g/min) is determined by kinetic modeling using the image-derived input function (IDIF) method. Our new dual tracer PET protocol is robust and flexible; the two tracers used can be replaced by different radiotracers to evaluate other processes in the brain. Moreover, our protocol is applicable to the study of brain fuel supply in multiple conditions such as normal aging and neurodegenerative pathologies such as Alzheimer''s and Parkinson''s diseases. 相似文献
Although numerous positron emission tomography (PET) studies with 18F‐fluoro‐deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG‐PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague–Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax/CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC‐independent CMRglc. The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 μmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG‐PET data available from translational studies.