首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, a sensitive and simple flow‐injection chemiluminescence (CL) method was developed for the quantitative analysis of haemoglobin. The method is based on the ability of haemoglobin to enhance the CL signal generated by a H2O2–K4Fe(CN)6–fluorescein alkaline system enhanced by CdTe quantum dots. Under the optimized conditions, haemoglobin can be detected in concentration range 7.35 × 10–9–2.5 × 10–6 mol/L, with a detection limit (3σ) of 1.8 × 10–9 mol/L and a relative standard deviation (RSD; for 5 × 10–7 mol/L haemoglobin) of 2.06% (n = 11). The present CL method was successfully applied for the determination of haemoglobin in three kinds of blood samples taken from an infant, an adult man, an adult woman and two reference samples. Compared with previous reports, the CL method described in this work is simple and rapid, with high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A simple chemiluminometric method using flow injection has been developed for the determination of laevodopa, based on its sensitizing effect on the weak chemiluminescence (CL) reaction between Na2SO3 and acidic KMnO4. Under optimum experimental conditions, the CL intensity was linearly related to the concentration of laevodopa from 3.4 × 10–8 to 2.4 × 10–5 mol/L and the detection limit was 1.1 × 10–8 mol/L (s:n = 3). The relative standard deviation (RSD) of the proposed method calculated from 20 replicate injection of 3 × 10–7 mol/L laevodopa was 3.3%. The correlation coefficient was 0.997. The method was successfully applied to the determination of laevodopa in commercial pharmaceutical formulations and spiked urine samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic‐resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil‐in‐water nano‐emulsion. Nano‐emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano‐emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage‐loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18–20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage‐emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano‐emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti‐microbial wound management strategies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:932–944, 2014  相似文献   

5.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A novel chemiluminescence method for the determination of gentiopicroside is presented, which was based on the inhibitory effect of gentiopicroside on the chemiluminescence reaction between luminol and myoglobin in a flow‐injection system. The decrement of chemiluminescence intensity was linear with the logarithm of gentiopicroside concentration over the range from 10.0 pg mL?1 to 500.0 ng mL?1 (r2 = 0.9992), with a detection limit of 3.0 pg mL?1 (3σ). At a flow rate of 2.0 mL min?1, a complete analytical process could be performed within 0.5 min, including sampling and washing, with a relative standard deviation of less than 3.0% (n = 5). The proposed procedure was applied successfully in the determination of gentiopicroside in pharmaceutical preparations, human urine and serum without any pretreatment procedure. The possible mechanism of the reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A simple and green flow injection chemiluminescence (FI‐CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4. The CL signal of azoxystrobin could be greatly improved when an off‐line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1–100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

9.
Siyu Chen  Fang Zhao 《Luminescence》2012,27(4):279-284
A simple, rapid and precise flow‐injection–chemiluminescence (FI–CL) method is presented for the determination of tenoxicam in pharmaceutical preparations and biological samples. The method is based on the weak chemiluminescence signal arising from the reaction of cerium(IV) in a nitric acid medium with sodium hyposulphite being significantly increased by tenoxicam in the presence of sodium dodecyl benzene sulphonate. Several experimental parameters affecting the CL reaction were examined and optimized systematically. Under the optimum conditions, the CL intensity was proportional to the concentration of tenoxicam in the range 7.0 × 10–11–5.0 × 10–8 g/mL. The detection limit was 2.3 × 10–11 g/mL tenoxicam and the relative standard deviation (RSD) was 2.1% for 1.0 × 10–9 g/mL tenoxicam solution (n = 11). The proposed method was applied to the determination of tenoxicam in pharmaceutical preparations, serum and human urine, with satisfactory results. The possible mechanism of the chemiluminescence reaction is also briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Flow injection (FI) methods are reported to determine retinol and α‐tocopherol based on its enhancement affect of lucigenin chemiluminescence (CL) in alkaline medium. Surfactants including Brij‐35, Triton X‐100, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate have been reported for the first time to enhance lucigenin CL intensity in the presence of retinol and α‐tocopherol. With Brij‐35, the CL intensity was enhanced by 67% for retinol and 58% for α‐tocopherol. CTAB was found to enhance the CL intensity by 16% for retinol whereas for α‐tocopherol, the CL intensity was quenched up to 95%. Retinol could be determined specifically in the presence of α‐tocopherol using CTAB. The calibration graphs were found to be linear up to 1.43 mg/L (R2 = 0.9985, n = 8) with a detection limit (3s) of 1.43 × 10?3 mg/L for retinol and 2.15 mg/L (R2 = 0.9989; n = 8) with a detection limit (3s) of 4.31 × 10?4 mg/L for α‐tocopherol. An injection throughput of 120/h, and relative standard deviations of 0.9–2.8% (n = 4) were achieved in the concentration range studied. The influence of common ions, excipients in pharmaceutical formulations and related organic compounds on the determination of retinol and α‐tocopherol individually was studied. The proposed methods were applied to determine retinol and α‐tocopherol in pharmaceutical formulations and human blood serum. The results did not differ significantly from the CL method and HPLC reference method at 95% confidence level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
S,N co‐doped carbon quantum dots (N,S‐CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV–Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S‐CQDs can enhance the chemiluminescence intensity of a luminol–H2O2 system. The possible mechanism of the luminol–H2O2–(N,S‐CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol–H2O2–N,S‐CQDs system. So, a novel flow‐injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5–50 μg ml?1 and a detection limit of 0.12 μg ml?1. The method shows promising application prospects.  相似文献   

12.
A non‐competitive immunoassay based on capillary electrophoresis (CE) with chemiluminescence (CL) detection has been developed for the determination of luteinizing hormone (LH) in human serum. The work involved the development of separation and CL conditions, allowing for routine analysis of serum samples. In this study, horseradish peroxidase (HRP)‐labelled monoclonal anti‐LH can catalyse the luminol–hydrogen peroxide reaction. The determined LH can react with excessive amount of HRP‐labelled anti‐LH. Within 14 min, free enzyme conjugate and immune complex could be separated in alkaline borate buffer by means of a high voltage (15 kV). To improve sensitivity, a series of measures were adopted, including the choice of para‐iodophenol as a CL enhancer, unique design in detect window. Under the optimal conditions, the calibration curve for LH was established in the concentration range 1–200 mIU/mL and the detection limit was 0.08 mIU/mL. Compared with ELISA, this method decreased the detection limit by about 12 times, and it has been successfully employed in the determination of LH in human serum. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and highly sensitive chemiluminescence (CL) method is reported for the determination of naphazoline hydrochloride (NH). It was found that the weak CL from the reaction of luminol and KIO4 in an alkaline medium could be highly amplified by cysteine‐capped cadmium telluride quantum dots (QDs) and the enhanced CL was effectively quenched by NH and this finding was utilized as a basis for the determination of NH. The QDs were synthesized in aqueous medium and characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐vis and photoluminescence spectroscopy. A possible mechanism was proposed for the CL system based on radical identification experiments, along with CL spectrum of the system. The experimental parameters were optimized by the reliable response surface methodology (RSM). Under the optimized experimental conditions, the proposed method allowed the determination of NH over the range of 5.0 × 10‐10–2.0 × 10‐7 mol/L (r2 = 0.9993, n = 10). The precision (RSD%) of the method, obtained from five replicate determinations of 2.0 and 150 nmol/L NH, was found to be 1.0% and 1.3%, respectively. The method was successfully applied to the determination of NH in pharmaceutical formulations and human urine and serum samples with results corroborated with the aid of those obtained from a standard method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this study was to assess whether a particular value of noninvasive salivary ultra‐weak chemiluminescence (UCL) could be used as a biomarker of psychological stress. Our study covered two groups. Group 1 comprised six healthy volunteers who stayed in a hospital for one night and group 2 comprised 15 patients with lung cancer and 24 patients with respiratory diseases other than lung cancer who were in hospital for an extended stay. First, we evaluated the UCL of saliva from six healthy volunteers before and after one night in hospital. Immunoglobulin A (IgA) concentrations were also measured. The integrated intensity value of UCL was correlated with the IgA concentration (correlation coefficient 0.90). Second, in the case of a long hospital stay, we found that the maximum salivary UCL intensities were higher in patients with lung cancer than in those with respiratory diseases other than lung cancer or in 28 healthy controls. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Vanillic acid (VA) is a phenolic acid, and acts as a natural antioxidant in fruits, vegetables and plants. The extraction and determination of trace levels of VA in plants is important, because stimulation of protein synthesis and activation of antioxidant enzymes occur in the presence of phenolic acids at trace levels. In this research, a photoluminescence spectroscopic method was developed for the quantification of VA in plant samples after separation and pre‐concentration. Selective extraction of VA from aqueous solution was performed using a solid‐phase extraction column packed with nickel–aluminum layered double hydroxide as a nano‐sorbent. After elution of extracted analyte from the column using 3 mL of a 3 mol/L NaOH solution, its concentration was determined spectrofluorometrically at λem = 357 nm with excitation at λex = 280 nm. The spectrofluorometry method gave a linear response for VA within the range 20.0–900.0 µg/L, with a correlation coefficient of 0.9982. The limit of detection and sorption capacity were 7.6 µg/L and 66.2 mg/g, respectively. The method was validated by comparing the obtained results with gas chromatographic data. This method was used to determine VA in Chenopodium album and Prangos asperula plants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
An enhanced thiosemicarbazide(TSC)–H2O2 chemiluminescence (CL) system was established and proposed as a new analytical method for determination of β‐lactam antibiotics, ampicillin sodium and amoxicillin at microgram levels. The method is based on the inhibition of CL emission accompanying oxidation of TSC by H2O2 in alkaline medium. The effect of anionic, cationic, and non‐ionic surfactants on the CL emission of the system was studied. Both N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB) and Triton X‐100, unlike sodium dodecyl sulfate (SDS), reinforced the CL intensity and were efficient to approximately the same level. The effect of the presence of eight non‐aqueous solvents on the CL system was also investigated. Upon addition of both of the non‐ionic surfactant, Triton X‐100, and the non‐aqueous solvent, N,N‐dimethyl formamide (DMF), the intensity of the CL reaction was increased 100‐fold. This method allows the measurement of 25–545 µg amoxicillin, and 35–350 µg ampicillin sodium. The detection limits are 8 µg for amoxicillin and 9 µg for ampicillin sodium. The relative standard deviations of six replicate measurements of 200 µg amoxicillin and 200 µg ampicillin sodium were 1.9 and 2.1%, respectively. The effect of foreign species on the determination of amoxicillin and ampicillin sodium was also examined. The proposed method was successfully applied to the determination of ampicillin sodium and amoxicillin in some pharmaceutical dosage forms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, rapid and sensitive chemiluminescent (CL) method for the assay of venlafaxine (VEN) in pharmaceutical formulations and serum samples by a two‐chip device is proposed. The method is based on the reaction of this drug with a tris(2,2′‐bipyridyl) ruthenium(II)–peroxydisulphate CL system. The optimum chemical conditions for CL emission were investigated. The calibration graph was linear for the concentration range 0.02–8.0 µg/mL. The detection and quantification limits were found to be 0.006 and 0.018 µg/mL, respectively, while the relative standard deviation (RSD) was <2.0%. The present CL procedure was applied to the determination of VEN in pharmaceutical formulations and serum samples; the recovery levels were in the range 96.5–101.2%. The results suggest that the method is unaffected by the presence of common formulation excipients found in these samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号