首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5′–C5′–C4′–C3′) from canonical to alternative conformations and/or C2′-endo → C3′-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.  相似文献   

2.
A series of new 2-aryl-4-thiazolidinones (3 and 4) was synthesized from 2-hydroxy-2,2-diphenyl-N’-[(substituted phenyl)methylene]acetohydrazides (2) and mercaptoacetic acid or 2-mercaptopropionic acid. The antimycobacterial activity of these compounds was determined and several leads with 95–99% inhibition at 6.25 μg/mL test concentration were identified. In addition, antitumor activities were measured against several tumor cell lines, and significant growth inhibition was observed for compound 4p. Taken together, 2-aryl-4-thiazolidinones were shown to be promising scaffolds for both antimycobacterial and tumor-targeting compounds.  相似文献   

3.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove in side‐by‐side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence‐specific manner, similarly to the corresponding mono‐conjugated hairpin structures. The series of conjugates with the general formula Oligo‐(L‐MGB‐R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = –(Py)n–, –(Im)n– or –[(Py/Im)n–(CH2)3CONH–(Py/Im)n–] and 1 < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis‐phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence‐specific parallel ligand [–L(Py)4R] to monophosphoroamidate conjugate CGTTTATT–L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [–L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

4.
A novel series of imidazole‐linked thiazolidinone hybrid molecules were designed and synthesized through a feasible synthetic protocol. The molecules were characterized with Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry (HRMS) techniques. In vitro susceptibility tests against Gram‐positive (S. aureus and B. subtilis ) and Gram‐negative bacteria (E. coli and P. aeruginosa ) gave highly promising results. The most active molecule (3e) gave a minimal inhibitory concentration (MIC) value of 3.125 μg/mL which is on par with the reference drug streptomycin. Structure–activity relationships revealed activity enhancement by nitro and chloro groups when they occupied meta position of the arylidene ring in 2‐((3‐(imidazol‐1‐yl)propyl)amino)‐5‐benzylidenethiazolidin‐4‐ones. DNA‐binding study of the most potent molecule 3e with salmon milt DNA (sm‐DNA) under simulated physiological pH was probed with UV–visible absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that compound 3e has a strong affinity towards DNA and binds at DNA minor groove with a binding constant (Kb) 0.18 × 102 L mol?1. Molecular docking simulations predicted strong affinity of 3e towards DNA with a binding affinity (ΔG) ‐8.5 kcal/mol. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction. The molecule 3e exhibited specific affinity towards adenine–thiamine base pairs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Quercetin and other flavonoids have been reported to exhibit both antioxidant and pro‐oxidant properties. Most studies about the pro‐oxidative ability were conducted in the presence of metal ions, and the essential functional moiety of quercetin responsible for the pro‐oxidative effect is still unclear. In this study, we evaluated the pro‐oxidative abilities in the absence of metal ions of two quercetin derivatives, i.e., quercetin‐3′‐O‐β‐D ‐glucoside ( 1 ) and quercetin‐3‐Oβ‐D ‐glucoside ( 2 ), by assessing DNA cleavage and HO.‐radical production. The binding mode between these compounds and DNA was studied by fluorescence and viscometric titrations. The results showed that 1 can efficiently induce oxidative damage to plasmid DNA, while 2 shows poor activity. Both 1 and 2 bind to DNA via groove‐binding. These results proved that the α‐hydroxy‐β‐oxo‐α,β‐enone moiety contributes to the pro‐oxidative activity of quercetin.  相似文献   

6.
A series of novel ethyl 2,7‐dimethyl‐4‐oxo‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐4,5‐dihydro‐3H‐pyrano[2,3‐d]pyrimidine‐6‐carboxylate derivatives 7a – 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF‐7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a , 7b , 7f , 7l , and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC50 ranging from 0.69 to 6.74 μm . Molecular docking studies revealed that the compounds 7a , 7b , 7f , 7l , and 7m are potent inhibitors of human DNA topoisomerase‐II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, kb, from UV/VIS absorptional binding studies of 7a and 7l with CT‐DNA were 10.77 × 104, 6.48 × 104, respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents.  相似文献   

7.
xDNA is a modified DNA, which contains natural as well as expanded bases. Expanded bases are generated by the addition of a benzene spacer to the natural bases. A set of AMBER force‐field parameters were derived for the expanded bases and the structural dynamics of the xDNA decamer ( xT5 ′ G xT A xC xG C xA xG T3′ ) · ( xA5′ C T xG C G xT A xC A3′) was explored using a 22 ns molecular dynamics simulation in explicit solvent. During the simulation, the duplex retained its Watson‐Crick base‐pairing and double helical structure, with deviations from the starting B‐form geometry towards A‐form; the deviations are mainly in the backbone torsion angles and in the helical parameters. The sugar pucker of the residues were distributed among a variety of modes; C2′ endo, C1′ exo, O4′ endo, C4′ exo, C2′ exo, and C3′ endo. The enhanced stacking interactions on account of the modification in the bases could help to retain the duplex nature of the helix with minor deviations from the ideal geometry. In our simulation, the xDNA showed a reduced minor groove width and an enlarged major groove width in comparison with the NMR structure. Both the grooves are larger than that of standard B‐DNA, but major groove width is larger than that of A‐DNA with almost equal minor groove width. The enlarged groove widths and the possibility of additional hydration in the grooves makes xDNA a potential molecule for various applications. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 351–360, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Coumarins are the most important class of natural compounds found widely in various plants. Many coumarin derivatives with different biological and pharmacological activities have been synthesized. In this study, the antiapoptotic and cytotoxic effects and DNA‐binding properties of some synthetic coumarin derivatives (4b, 4d, 4f, 4 g (DBP‐g), 4 h and 4j) against K562 cell lines were investigated using different techniques. MTT assay indicated that the DBP‐g compound was more active than other derivatives, with a IC50 value of 55 μM, and therefore this compound was chosen for further investigation. Apoptosis induction was assessed using acridine orange/ethidium bromide double‐staining and cell‐cycle analysis. In addition, in vitro DNA‐binding studies were carried out using ultraviolet–visible light absorption and fluorescence spectroscopy, as well as viscosity measurement and molecular modelling studies. In vitro results indicated that DBP‐g interacted with DNA through a groove‐binding mode with a binding constant (Kb) of 1.17 × 104 M?1. In agreement with other experimental data, molecular docking studies showed that DBP‐g is a minor groove binder. Overall, it can be concluded that DBP‐g could be used as an effective and novel chemotherapeutic agent.  相似文献   

9.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

10.
Novel enamine derivatives were synthesized from the reaction of lactone and chalcones and their antiproliferative and cytotoxic activities against six cancer cell lines (e. g., HeLa, HT29, A549, MCF7, PC3 and Hep3B) and one normal cell lines (e. g., FL) were investigated along with their mode of interactions with CT‐DNA. Most of the enamine derivatives with IC50 values of 86–168 μM demonstrated much stronger antiproliferative activity than the starting molecules against the cancer cells. While, among the enamine derivatives, four compounds displayed higher cytotoxic potency than the control drugs (5‐fluorouracil and cisplatin) against the Hep3B cell lines, these compounds did not exhibit any significant toxicity against normal cells, FL. The UV/VIS spectral data suggest that eight compounds cause hypochromism with a slight bathochromic shift (~6 nm), indicating that they bind to the DNA by way of an intercalative or minor groove binding mode. The binding constants of the compounds are in the range of 0.1×103 M?1–2.3×104 M?1. The antiproliferative activity of studied enamine derivatives could possibly be due to their DNA binding as well as their cytotoxic properties. In addition to these assays, the chalcones and enamine derivatives were investigated by molecular docking to calculate the synergistic effect of antiproliferative activities against six human cancer cell lines.  相似文献   

11.
In the synthesis performed in this study, derivatives of 4‐tert‐butylcyclohexanone 1 were obtained using typical reactions of organic synthesis. The bioactivity of the selected compounds was evaluated. 1‐(Bromomethyl)‐8‐tert‐butyl‐2‐oxaspiro[4.5]decan‐3‐one ( 5 ) was characterized by attractant properties against larvae and a weak feeding deterrent activity against adults of Alphitobius diaperinus Panzer . This bromolactone was a moderate antifeedant towards Myzus persicae Sulzer . In addition, ethyl (4‐tert‐butylcyclohexylidene)acetate ( 2 ) and bromolactone 5 displayed antibacterial activity. The strongest bacteriostatic effect was observed against Gram‐positive strains: Bacillus subtilis and Staphylococcus aureus. The bromolactone 5 also limited the growth of Escherichia coli strain.  相似文献   

12.
13.
Cren7, a newly found chromatin protein, is highly conserved in the Crenarchaeota. The protein shows higher affinity for double‐stranded DNA than for single‐stranded DNA, constrains negative DNA supercoils in vitro and is associated with genomic DNA in vivo. Here we report the crystal structures of the Cren7 protein from Sulfolobus solfataricus in complex with two DNA sequences. Cren7 binds in the minor groove of DNA and causes a single‐step sharp kink in DNA (~53°) through the intercalation of the hydrophobic side chain of Leu28. Loop β3‐β4 of Cren7 undergoes a significant conformational change upon binding of the protein to DNA, suggesting its critical role in the stabilization of the protein–DNA complex. The roles of DNA‐contacting amino acid residues in stabilizing the Cren7–DNA interaction were examined by mutational analysis. Structural comparison of Cren7‐DNA complexes with Sac7d‐DNA complexes reveals significant differences between the two proteins in DNA binding surface, suggesting that Cren7 and Sul7d serve distinct functions in chromosomal organization.  相似文献   

14.
Volatile compounds of hedge mustard (Sysimbrium officinale) have been investigated for the first time. Forthy‐two compounds were identified after hydrodistillation (without or upon autolysis) after gas chromatography and gas chromatography/mass spectrometry analyses. In addition, after decoction and hydrolysis of O‐glycosides, 18 volatile O‐aglycones were identified. In general, the main volatiles found in hydrodistillates were: isopropyl isothiocyanate (27.6–48.9%), 2‐methylpropanenitrile (0.5–18.8%), (Z)‐hex‐3‐en‐1‐ol (0.5–18.0%), sec‐butyl isothiocyanate (4.9–9.4%), (E)‐hex‐2‐enal (3.5–8.6%), (Z)‐hex‐2‐en‐1‐ol (0.3–8.4%), octanoic (0.5–8.6%) and dodecanoic acid (0–5.0%), 2‐methylbutanenitrile (0–4.6%), dibutyl phthalate (0–4.5%), and ethyl linolenate (0–3.6%). The main volatile O‐aglycones were: 2‐phenylethyl alcohol (21.5%), 6,7‐dehydro‐7,8‐dihydro‐3‐oxo‐α‐ionol (9.3%), eugenol (8.3%), benzyl alcohol (7.0%), ethyl vanillate (5.2%), 6‐(tert‐butyl)‐5‐methylphenol (5.1%), vanillin acetone (4.7%), ethyl 4‐hydroxybenzoate (4.3%), and 2‐hydroxy‐β‐ionone (3.8%). All hydrodistillates exhibited great potential of antibacterial activity against five Gram‐positive bacteria, nine ampicillin‐resistant Gram‐negative bacteria, and four fungi at a concentration of 500 μg/ml using the disc diffusion method.  相似文献   

15.
Seven triterpenoids, 1  –  7 , two diarylheptanoids, 8 and 9 , four phenolic compounds, 10  –  13 , and three other compounds, 14  –  16 , were isolated from the hexane and MeOH extracts of the bark of Myrica cerifera L. (Myricaceae). Among these compounds, betulin ( 1 ), ursolic acid ( 3 ), and myricanol ( 8 ) exhibited cytotoxic activities against HL60 (leukemia), A549 (lung), and SK‐BR‐3 (breast) human cancer cell lines (IC50 3.1 – 24.2 μm ). Compound 8 induced apoptotic cell death in HL60 cells (IC50 5.3 μm ) upon evaluation of the apoptosis‐inducing activity by flow cytometric analysis and by Hoechst 33342 staining method. Western blot analysis on HL60 cells revealed that 8 activated caspases‐3, ‐8, and ‐9 suggesting that 8 induced apoptosis via both mitochondrial and death receptor pathways in HL60. Upon evaluation of the melanogenesis‐inhibitory activity in B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), erythrodiol ( 7 ), 4‐hydroxy‐2‐methoxyphenyl β‐d ‐glucopyranoside ( 13 ), and butyl quinate ( 15 ) exhibited inhibitory effects (65.4 – 86.0% melanin content) with no, or almost no, toxicity to the cells (85.9 – 107.4% cell viability) at 100 μm concentration. In addition, 8 , myricanone ( 9 ), myricitrin ( 10 ), protocatechuic acid ( 11 ), and gallic acid ( 12 ) revealed potent DPPH radical‐scavenging activities (IC50 6.9 – 20.5 μm ).  相似文献   

16.
Two copper(II) terpyridine complexes, [Cu(atpy)(NO3)(H2O)](NO3) ? 3H2O ( 1 ) and [Cu(ttpy)(NO3)2] ( 2 ) (atpy = 4′‐p‐N9‐adeninylmethyl‐phenyl‐2,2′:6,2″‐terpyridine; ttpy = 4′‐p‐tolyl‐2,2′:6,2″‐terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC‐3). The cytotoxicity of the complex 1 was lower than that of the complex 2 . Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double‐stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA‐binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA‐binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:295–302, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20292  相似文献   

17.
18.
19.
Aims: Present report describes the in vitro antimalarial activity and docking analysis of seven 4‐aminoquinoline‐clubbed 1,3,5‐triazine derivatives on pf‐DHFR‐TS. Methods and Results: The antimalarial activity was evaluated in vitro against chloroquine‐sensitive 3D7 strain of Plasmodium falciparum. Compounds were docked onto the active site of pf‐DHFR‐TS using docking server to explicate necessary structural requirements for antimalarial activity. Conclusion: Title molecules demonstrated considerable bioactivity against the malaria parasite. Docking analysis revealed deep engulfment of the molecules into the inner groove of pf‐DHFR‐TS active site by making stable ligand–receptor posses. Hydrophobic interaction was identified as the only major interacting force playing a role between ligand–receptor interaction and minor with hydrogen bonds. Signi?cance and Impact of the study: The study provided the novel insight into the necessary structural requirement for rationale‐based antimalarial drug discovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号