首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I.  相似文献   

2.
Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.  相似文献   

3.
RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector‐based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue‐specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene‐silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6‐shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6‐shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.  相似文献   

4.
5.
Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

6.
Protein recruitment to DNA double-strand breaks (DSBs) relies on ubiquitylation of the surrounding chromatin by the RING finger ubiquitin ligases RNF8 and RNF168. Flux through this pathway is opposed by several deubiquitylating enzymes (DUBs), including OTUB1 and USP3. By analyzing the effect of individually overexpressing the majority of human DUBs on RNF8/RNF168-mediated 53BP1 retention at DSB sites, we found that USP44 and USP29 powerfully inhibited this response at the level of RNF168 accrual. Both USP44 and USP29 promoted efficient deubiquitylation of histone H2A, but unlike USP44, USP29 displayed nonspecific reactivity toward ubiquitylated substrates. Moreover, USP44 but not other H2A DUBs was recruited to RNF168-generated ubiquitylation products at DSB sites. Individual depletion of these DUBs only mildly enhanced accumulation of ubiquitin conjugates and 53BP1 at DSBs, suggesting considerable functional redundancy among cellular DUBs that restrict ubiquitin-dependent protein assembly at DSBs. Our findings implicate USP44 in negative regulation of the RNF8/RNF168 pathway and illustrate the usefulness of DUB overexpression screens for identification of antagonizers of ubiquitin-dependent cellular responses.  相似文献   

7.
8.
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of chromatin conformation and epigenetic patterns. lncRNA expression levels are widely taken as an indicator for functional properties. However, the role of RNA processing in modulating distinct features of the same lncRNA is less understood. The establishment of heterochromatin at rRNA genes depends on the processing of IGS‐rRNA into pRNA, a reaction that is impaired in embryonic stem cells (ESCs) and activated only upon differentiation. The production of mature pRNA is essential since it guides the repressor TIP5 to rRNA genes, and IGS‐rRNA abolishes this process. Through screening for IGS‐rRNA‐binding proteins, we here identify the RNA helicase DHX9 as a regulator of pRNA processing. DHX9 binds to rRNA genes only upon ESC differentiation and its activity guides TIP5 to rRNA genes and establishes heterochromatin. Remarkably, ESCs depleted of DHX9 are unable to differentiate and this phenotype is reverted by the addition of pRNA, whereas providing IGS‐rRNA and pRNA mutants deficient for TIP5 binding are not sufficient. Our results reveal insights into lncRNA biogenesis during development and support a model in which the state of rRNA gene chromatin is part of the regulatory network that controls exit from pluripotency and initiation of differentiation pathways.  相似文献   

9.
A model has been proposed suggesting that the tRNA molecule must have originated by direct duplication of an RNA hairpin structure [Di Giulio, M., 1992. On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199-214]. A non-monophyletic origin of this molecule has also been theorized [Di Giulio, M., 1999. The non-monophyletic origin of tRNA molecule. J. Theor. Biol. 197, 403-414]. In other words, the tRNA genes evolved only after the evolutionary stage of the last universal common ancestor (LUCA) through the assembly of two minigenes codifying for different RNA hairpin structures, which is what the exon theory of genes suggests when it is applied to the model of tRNA origin. Recent observations strongly corroborate this theorization because it has been found that some tRNA genes are completely separate in two minigenes codifying for the 5' and 3' halves of this molecule [Randau, L., et al., 2005a. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 433, 537-541]. In this paper it is shown that these tRNA genes codifying for the 5' and 3' halves of this molecule are the ancestral form from which the tRNA genes continuously codifying for the complete tRNA molecule are thought to have evolved. This, together with the very existence of completely separate tRNA genes codifying for their 5' and 3' halves, proves a non-monophyletic origin for tRNA genes, as a monophyletic origin would exclude the existence of these genes which have, on the contrary, been observed. Here the polyphyletic origin of genes codifying for proteins is also suggested and discussed. Moreover, a hypothesis is advanced to suggest that the LUCA might have had a fragmented genome made up of RNA and the possibility that 'Paleokaryotes' may exist is outlined. Finally, the characteristic of the indivisibility of homology that these polyphyletic origins seem to remove at the sequence level is discussed.  相似文献   

10.
11.
12.
13.
Protein modification by ubiquitin and ubiquitin-like molecules is a critical regulatory process. Like most regulated protein modifications, ubiquitination is reversible. Deubiquitination, the reversal of ubiquitination, is quickly being recognized as an important regulatory strategy. Nearly one hundred human DUBs (deubiquitinating enzymes) in five different gene families oppose the action of several hundred ubiquitin ligases, suggesting that both ubiquitination and its reversal are highly regulated and specific processes. It has long been recognized that ubiquitin ligases are modular enzyme systems that often depend on scaffolds and adaptors to deliver substrates to the catalytically active macromolecular complex. Although many DUBs bind ubiquitin with reasonable affinities (in the nM to microM range), a larger number have little affinity but exhibit robust catalytic capability. Thus it is apparent that these DUBs must acquire their substrates by binding the target protein in a conjugate or by associating with other macromolecular complexes. We would then expect that a study of protein partners of DUBs would reveal a variety of substrates, scaffolds, adaptors and ubiquitin receptors. In the present review we suggest that, like ligases, much of the regulation and specificity of deubiquitination arises from the association of DUBs with these protein partners.  相似文献   

14.
Deubiquitinating enzymes (DUBs) proteolytically cleave ubiquitin from ubiquitinated proteins, and inhibition of DUBs that rescue oncogenic proteins from proteasomal degradation is of emerging therapeutic interest. Recently, USP2 and UCH37 have been shown to deubiquitinate tumor-growth-promoting proteins, and other DUBs have been shown to be overexpressed in cancer cells. Therefore inhibition of DUBs is of interest as a potential therapeutic strategy for treating cancer. DUBs require the presence of properly folded ubiquitin protein in the substrate for efficient proteolysis, which precludes the use of synthetic peptide substrates in DUB activity assays. Because of the requirement for full-length ubiquitin, substrates suitable for use in fluorescent assays to identify or study DUB inhibitors have been difficult to prepare. We describe the development of a time-resolved fluorescence resonance energy transfer (FRET)-based DUB substrate that incorporates full-length ubiquitin that is site-specifically labeled using genetically encoded yellow fluorescent protein (YFP) and a chemically attached terbium donor. The intact substrate shows a high degree of FRET between terbium and YFP, whereas DUB-dependent cleavage leads to a decrease in FRET.  相似文献   

15.
Tamura K 《Bio Systems》2008,92(1):91-98
The origin of homochirality of l-amino acids has long been a mystery. Aminoacylation of tRNA might have provided chiral selectivity, since it is the first process encountered by amino acids and RNA. An RNA minihelix (progenitor of the modern tRNA) was aminoacylated by an aminoacyl phosphate oligonucleotide that exhibited a clear preference for l- as opposed to d-amino acids. A mirror-image RNA system with l-ribose exhibited the opposite selectivity, i.e., it exhibited an apparent preference for the d-amino acid. The selectivity for l-amino acids is based on the stereochemistry of RNA. The side chain of d-amino acids is located much closer to the terminal adenosine of the minihelix, causing them collide and interfere during the amino acid-transfer step. These results suggest that the putative RNA world that preceded the protein theatre determined the homochirality of l-amino acids through tRNA aminoacylation.  相似文献   

16.
Deubiquitinating enzymes (DUBs) control the ubiquitination status of proteins in various cellular pathways. Regulation of the activity of DUBs, which is critically important to cellular homoeostasis, can be achieved at the level of gene expression, protein complex formation, or degradation. Here, we report that ubiquitination also directly regulates the activity of a DUB, ataxin‐3, a polyglutamine disease protein implicated in protein quality control pathways. Ubiquitination enhances ubiquitin (Ub) chain cleavage by ataxin‐3, but does not alter its preference for K63‐linked Ub chains. In cells, ubiquitination of endogenous ataxin‐3 increases when the proteasome is inhibited, when excess Ub is present, or when the unfolded protein response is induced, suggesting that the cellular functions of ataxin‐3 in protein quality control are modulated through ubiquitination. Ataxin‐3 is the first reported DUB in which ubiquitination directly regulates catalytic activity. We propose a new function for protein ubiquitination in regulating the activity of certain DUBs and perhaps other enzymes.  相似文献   

17.
Ubiquitylation is a highly diverse and complex post-translational modification for the regulation of protein function and stability. Studies of ubiquitylation have, however, been hampered by its rapid reversal in cell extracts, for example through the action of de-ubiquitylating enzymes (DUBs). Here we describe a novel ubiquitin-binding protein reagent, MultiDsk, composed of an array of five UBA domains from the yeast ubiquitin-binding protein Dsk2, fused to GST. MultiDsk binds ubiquitylated substrates with unprecedented avidity, and can be used as both an affinity resin to study protein ubiquitylation, and to effectively protect ubiquitylated proteins from the action of DUBs and the proteasome in crude cell extracts. We use the resin to show that the Def1 protein becomes ubiquitylated in response to DNA damage, and to isolate ubiquitylated forms of RNA polymerase II.  相似文献   

18.
19.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号