首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomolecules are often purified via solvent gradient batch chromatography. Typically suitable smooth linear solvent gradients are applied to obtain the separation between the desired component and hundreds of impurities. The desired product is usually intermediate between weakly and strongly adsorbing impurities, and therefore a central cut is required to get the desired pure product. The stationary phases used for preparative and industrial separations have a low efficiency due to strong axial dispersion and strong mass transfer resistances. Therefore a satisfactory purification often cannot be achieved in a single chromatographic step. For large scale productions and for very valuable molecules, countercurrent operation such as the well known SMB process, is needed in order to increase separation efficiency, yield and productivity. In this work a novel multicolumn solvent gradient purification process (MCSGP-process) is introduced, which combines two chromatographic separation techniques, which are solvent gradient batch and continuous countercurrent SMB. The process consists of several chromatographic columns, which are switched in position opposite to the flow direction. Most of the columns are equipped with a gradient pump to adjust the modifier concentration at the column inlet. Some columns are interconnected, so that non pure product streams are internally, countercurrently recycled. Other columns are short circuited and operate in batch mode. As a working example the purification of an industrial stream containing 46% of the hormone Calcitonin is considered. It is found that for the required purity the MCSGP unit achieves a yield close to 100% compared to a maximum value of a single column batch chromatography of 66%.  相似文献   

2.
The realization of an end‐to‐end integrated continuous lab‐scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter‐based cell‐retention, a continuous two column capture process, a virus inactivation step, a semi‐continuous polishing step (twin‐column MCSGP), and a batch‐wise flow‐through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity‐yield trade‐off of classical batch‐wise bind‐elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight‐through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end‐to‐end integration. The steady‐state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303–1313, 2017  相似文献   

3.
The charged monoclonal antibody (mAb) variants of the commercially available therapeutics Avastin®, Herceptin® and Erbitux® were separated by ion‐exchange gradient chromatography in batch and continuous countercurrent mode (MCSGP process). Different stationary phases, buffer conditions and two MCSGP configurations were used in order to demonstrate the broad applicability of MCSGP in the field of charged protein variant separation. Batch chromatography and MCSGP were compared with respect to yield, purity, and productivity. In the case of Herceptin®, also the biological activity of the product stream was taken into account as performance indicator. The robustness of the MCSGP process against feed composition variations was confirmed experimentally and by model simulations. Biotechnol. Bioeng. 2010;107:652–662. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
A two‐step chromatography process for monoclonal antibody (mAb) purification from clarified cell culture supernatant (cCCS) was developed using cation exchange Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) as a capture step. After an initial characterization of the cell culture supernatant the capture step was designed from a batch gradient elution chromatogram. A variety of chromatographic materials was screened for polishing of the MCSGP‐captured material in batch mode. Using multi‐modal anion exchange in bind‐elute mode, mAb was produced consistently within the purity specification. The benchmark was a state‐of‐the‐art 3‐step chromatographic process based on protein A, anion and cation exchange stationary phases. The performance of the developed 2‐step process was compared to this process in terms of purity, yield, productivity and buffer consumption. Finally, the potential of the MCSGP process was investigated by comparing its performance to that of a classical batch process that used the same stationary phase. Biotechnol. Bioeng. 2010;107: 974–984. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
The novel "multicolumn countercurrent solvent gradient purification" (MCSGP) process has been modeled for the purification of a polypeptide mixture characterized by a strong non-linear competitive adsorption isotherm. As a model system, the purification of an industrial polypeptide mixture containing 46% of the hormone calcitonin has been selected. The many impurities contained in the mixture have been lumped into three key impurities, which are selected as the ones eluting closer to the main component. The simulation model allows for a better understanding of the complex operating behavior of the multicolumn system, which has been experimentally investigated in a previous work. Through a systematic parametric analyses of the model behavior, the main operating parameters controlling the process performance in terms of purity and yield are investigated. The study of internal liquid and adsorbed phase concentration profiles along the unit for the different operating conditions allow elucidating the working principle of the new separation process. It is found that the MCSGP unit achieves much higher yields for a given product purity than the corresponding single-column batch units.  相似文献   

6.
Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.  相似文献   

7.
The recently developed continuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Process has been reduced to a fully equivalent semicontinuous setup with only three chromatographic columns and three gradient pump modules. Actually the 3-column MCSGP unit can even achieve better performance than the original 6-column process due to an additional degree of freedom, that is a different switching time for the "batch lane" and the "interconnected lane." Experimental results for the 3-column MCSGP unit of the purification of an industrial multicomponent peptide mixture containing 46% of Calcitonin on a reversed phase resin are compared with model simulations. It is concluded, that the model is well suited to predict the system behavior and therefore to design its optimal operating conditions.  相似文献   

8.
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco‐friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed‐batch culture of GS‐NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966–988, 2017  相似文献   

9.
Multi‐column capture processes show several advantages compared to batch capture. It is however not evident how many columns one should use exactly. To investigate this issue, twin‐column CaptureSMB, 3‐ and 4‐column periodic counter‐current chromatography (PCC) and single column batch capture are numerically optimized and compared in terms of process performance for capturing a monoclonal antibody using protein A chromatography. Optimization is carried out with respect to productivity and capacity utilization (amount of product loaded per cycle compared to the maximum amount possible), while keeping yield and purity constant. For a wide range of process parameters, all three multi‐column processes show similar maximum capacity utilization and performed significantly better than batch. When maximizing productivity, the CaptureSMB process shows optimal performance, except at high feed titers, where batch chromatography can reach higher productivity values than the multi‐column processes due to the complete decoupling of the loading and elution steps, albeit at a large cost in terms of capacity utilization. In terms of trade‐off, i.e. how much the capacity utilization decreases with increasing productivity, CaptureSMB is optimal for low and high feed titers, whereas the 3‐column process is optimal in an intermediate region. Using these findings, the most suitable process can be chosen for different production scenarios.  相似文献   

10.
Intensified processing and end‐to‐end integrated continuous manufacturing are increasingly being considered in bioprocessing as an alternative to the current batch‐based technologies. Similar approaches can also be used at later stages of the production chain, such as in the post‐translational modifications that are often considered for therapeutic proteins. In this work, a process to intensify the enzymatic digestion of immunoglobulin G (IgG) and the purification of the resulting Fab fragment is developed. The process consists of the integration of a continuous packed‐bed reactor into a multicolumn chromatographic process. The integration is realized through the development of a novel multicolumn countercurrent solvent gradient purification (MCSGP) process, which, by adding a third column to the classical two‐column MCSGP process, allows for continuous loading and then straight‐through processing of the mixture leaving the reactor.  相似文献   

11.
Xie Y  Mun S  Kim J  Wang NH 《Biotechnology progress》2002,18(6):1332-1344
A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.  相似文献   

12.
Continuous processing is the future production method for monoclonal antibodies (mAbs). A fully continuous, fully automated downstream process based on disposable equipment was developed and implemented inside the MoBiDiK pilot plant. However, a study evaluating the comparability between batch and continuous processing based on product quality attributes was not conducted before. The work presented fills this gap comparing both process modes experimentally by purifying the same harvest material (side-by-side comparability). Samples were drawn at different time points and positions in the process for batch and continuous mode. Product quality attributes, product-related impurities, as well as process-related impurities were determined. The resulting polished material was processed to drug substance and further evaluated regarding storage stability and degradation behavior. The in-process control data from the continuous process showed the high degree of accuracy in providing relevant process parameters such as pH, conductivity, and protein concentration during the entire process duration. Minor differences between batch and continuous samples are expected as different processing conditions are unavoidable due to the different nature of batch and continuous processing. All tests revealed no significant differences in the intermediates and comparability in the drug substance between the samples of both process modes. The stability study of the final product also showed no differences in the stability profile during storage and forced degradation. Finally, online data analysis is presented as a powerful tool for online-monitoring of chromatography columns during continuous processing.  相似文献   

13.
The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi‐column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter‐current column movement. Continuous‐capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity‐yield trade‐off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous‐manufacturing technologies.  相似文献   

14.
The extraction of antibodies using a polyethylene glycol (PEG)‐citrate aqueous two‐phase system (ATPS) was investigated. Studies using purified monoclonal antibody (mAb) identified operating ranges for successful phase formation and factors that significantly affected antibody partitioning. The separation of antibody and host cell protein (HCP) from clarified cell culture media was examined using statistical design of experiments (DOE). The partitioning of antibody was nearly complete over the entire range of the operating space examined. A model of the HCP partitioning was generated in which both NaCl and citrate concentrations were identified as significant factors. To achieve the highest purity, the partitioning of HCP from cell culture fluid into the product containing phase was minimized using a Steepest Descent algorithm. An optimal ATPS consisting of 14.0% (w/w) PEG, 8.4% (w/w) citrate, and 7.2% (w/w) NaCl at pH 7.2 resulted in a product yield of 89%, an approximate 7.6‐fold reduction in HCP levels relative to the clarified cell culture fluid before extraction and an overall purity of 70%. A system consisting of 15% (w/w) PEG, 8% (w/w) citrate, and 15% (w/w) NaCl at pH 5.5 reduced product‐related impurities (aggregates and low molecular product fragments) from ~40% to less than 0.5% while achieving 95% product recovery. At the experimental conditions that were optimized in the batch mode, a scale‐up model for the use of counter‐current extraction technology was developed to identify potential improvements in purity and recovery that could be realized in the continuous operational mode. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
The conventional cold-ethanol batch fractionation method of human plasma is converted to an automatically controlled continuous fractionation process. The selected protein fractions are precipitated by mixing in the recycled product stream of the suspension. Compared to the batch process, the continuous fractionation process generates less coprecipitation and less spontaneous nucleation, allowing efficient centrifugation of precipitates, and the yield and purity of albumin in the final fraction is significantly increased.  相似文献   

16.
Polysialic acid (polySia) is a carbohydrate polymer of varying chain length. It is a promising scaffold material for tissue engineering. In this work, high chain length polySia was produced by an Escherichia coli K1 strain in a 10‐L bioreactor in batch and fed‐batch mode, respectively. A new downstream process for polySia is presented, based on membrane adsorber technology and use of inorganic anion exchanger. These methods enable the replacement of precipitation steps, such as acetone, cetavlon, and ethanol precipitation of the already established purification process. The purification process was simplified, while process efficiency and product qualities were improved. The overall yield of polySia from a 10‐L batch cultivation process was 61% and for 10‐L fed‐batch cultivation process the yield was 40% with an overall purity of 98%. The endotoxin content was determined to be negligible (14 EU mg?1). The main advantage of this new downstream process is that polySia with high chain length of more than 130 degree of polymerization can be obtained. In fed‐batch cultivation, chain lengths up to 160 degree of polymerization were obtained.  相似文献   

17.
The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity—defined as percentage of ergosterol in the total sterols in the yeast—is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on‐line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative‐fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10?6 g L?1h?1, more than three times higher than with standard baker's yeast fed‐batch cultivations, which attained in average 32.14 × 10?6 g L?1h?1. At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down‐stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838–848, 2017  相似文献   

18.
山羊毛提取L-胱氨酸杂质源及其除杂工艺   总被引:1,自引:1,他引:0  
山羊毛提取L 胱氨酸过程中伴有上百种有机类、无机类杂质的形成 ,分析杂质的形成过程及其对胱氨酸收率和产品质量的影响 ,采用料毛物理化学法除杂、活性炭两次脱色、三次中和重结晶除杂工艺 ,杂质除净率高 ,L 胱氨酸产品质量达HG 2 0 30 - 91优质品标准。  相似文献   

19.
Process development and optimization studies were performed in order to improve the purification process of (rhIFN-gamma). The objective was to generate material with higher purity and quantity. An in-process control screening was developed to obtain the optimal condition for column chromatographic purification by measuring LPS, nucleic acids, rhIFN- gamma, monomer and its covalent dimers. A new resin screening method was applied to select optimal resin for each of the chromatographic columns. The resulting process used Butyl and Q-Sepharose, refolding and SP-Sepharose for purification of IFN-gamma. Effects of different process conditions such as cell lysis, removal of impurity and oxygen concentration were evaluated. Removal of impurities was evaluated by washing of inclusion bodies with 1% Triton X-100 and 3M urea and different chromatography steps. The results reveal that Triton removed about 43% of the LPS but urea had no effect on removal of nucleic acids and LPS. Further analysis show that removal of impurities by column chromatography decreases aggregation and increases the process yield. Oxygen concentration was identified as parameter that could have a significant impact on covalent dimers formation, as an unacceptable pharmaceutical form of rhIFN-gamma. On the basis of small-scale studies, optimum operating conditions were chosen and the purification process was successfully scaled-up to a pilot scale process with step yield and product quality that were better than previous reports.  相似文献   

20.
Biopharmaceutical manufacturing processes can be affected by variability in cell culture media, e.g. caused by raw material impurities. Although efforts have been made in industry and academia to characterize cell culture media and raw materials with advanced analytics, the process of industrial cell culture media preparation itself has not been reported so far. Within this publication, we first compare mid‐infrared and two‐dimensional fluorescence spectroscopy with respect to their suitability as online monitoring tools during cell culture media preparation, followed by a thorough assessment of the impact of preparation parameters on media quality. Through the application of spectroscopic methods, we can show that media variability and its corresponding root cause can be detected online during the preparation process. This methodology is a powerful tool to avoid batch failure and is a valuable technology for media troubleshooting activities. Moreover, in a design of experiments approach, including additional liquid chromatography–mass spectrometry analytics, it is shown that variable preparation parameters such as temperature, power input and preparation time can have a strong impact on the physico‐chemical composition of the media. The effect on cell culture process performance and product quality in subsequent fed‐batch processes was also investigated. The presented results reveal the need for online spectroscopic methods during the preparation process and show that media variability can already be introduced by variation in media preparation parameters, with a potential impact on scale‐up to a commercial manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号