首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
家蝇抗菌肽的研究与应用   总被引:7,自引:0,他引:7  
近年来,对家蝇Muscadomestica体内外抗菌活性物质的研究受到人们广泛的关注,其中研究较多的是抗菌肽。家蝇抗菌肽对细菌、真菌、肿瘤癌细胞和病毒等具有生物活性,可通过针刺、带菌针刺、超声波、放射性射线、高频电磁场和生理盐水等方法诱导增量产生,能耐极端的温度和pH值的溶液,在高浓度盐溶液中也很稳定。文章还对家蝇抗菌肽的结构特点、作用机理与分子生物学研究做了概述,同时对家蝇抗菌肽的应用前景进行了讨论。  相似文献   

2.
【目的】研究分离于陕西、河南、四川和北京四省(市)鸡肉源沙门氏菌对喹诺酮和部分氟喹诺酮类抗生素的药敏性及相关耐药基因,更好地了解耐药性的产生和传播途径,确保食品安全。【方法】用琼脂稀释法测定沙门氏菌的药敏性,用PCR和基因序列测定法确定耐药沙门氏菌中与(氟)喹诺酮类抗生素耐药相关的喹诺酮类抗性决定区基因突变及质粒携带的耐药基因。【结果】390株沙门氏菌中,63.59%的菌株对萘啶酮酸产生抗性,21.28%、16.67%和14.62%的菌株分别对环丙沙星、左氧氟沙星和加替沙星产生抗性。248株萘啶酮酸抗性菌中,aac(6’)-Ib-cr、qnrA、qnrB和qnrS基因的检出率分别为20.16%、10.89%、10.08%和1.61%。83株耐环丙沙星的菌株中,gyrA和parC基因的点突变共199个;其中gyrA基因中以Ser83Phe和Asp87Gly双突变最为常见,其次分别为Ser83Phe和Asp87Asn双突变、Ser83Tyr、Ser83Phe、Asp87Gly;parC基因的65个点突变均为Ser80Arg突变。【结论】四省市中鸡肉源沙门氏菌耐药状况严重,其解旋酶和拓扑异构酶基因突变及质粒携带的耐药基因是导致沙门氏菌耐药的重要机制。  相似文献   

3.
抗菌肽具有抗菌谱广、热稳定性强、分子量小及免疫原性小等特点,其杀菌机制独特,病原菌不易产生耐药性,有望开发成新一代肽类抗生素。本文主要综述了影响抗菌肽生物活性的生化性质,即螺旋度、疏水性、两亲性、正电荷数等,并从结构的角度论述了其对抗菌肽抑菌活性的影响。部分抗菌肽具有空间结构不稳定、溶血活性等缺点,限制了其临床应用。因此,对天然抗菌肽的改造也成为目前抗菌肽的研究热点,本文还综述了天然抗菌肽的改造方法。  相似文献   

4.
天然抗菌肽具有较强的杀菌能力,但高生物相容性抗菌肽的构建一直阻碍着该领域的发展.为了提高抗菌肽的选择特异性,通过分子动力学分析探讨了抗菌肽的结构特性,并检测其生物学活性.首先以(RXKY)2(YRY)2 (X代表Ile,Y代表Leu)为模板设计新型抗菌肽分子RIKL.通过圆二色谱(circular dichroism,...  相似文献   

5.
汪庆  张瑞芬  王亚楠  朱宝利  曾斌 《微生物学报》2022,62(11):4353-4366
抗菌肽是一类广泛存在于生物体内的小分子肽,参与构成生物体先天免疫,可以有效抵抗病原微生物的入侵。抗菌肽具有广谱抗菌活性,且不易产生耐药性等特点,在治疗感染性疾病方面具有独特的优势,有望成为理想的抗感染药物。然而,由于部分抗菌肽尚存在稳定性差、毒性高等问题,限制了抗菌肽的广泛应用。由于人工智能算法能有效合成具有高稳定性、低毒性的抗菌肽,在探索天然抗菌肽中展现了巨大的潜力,因此本文简述了抗菌肽的抗菌机制、结构改造以及利用机器学习和深度学习等人工智能算法进行新型抗菌肽研发的优化策略,以期为抗菌肽结构优化及研发提供新思路。  相似文献   

6.
7.
Antimicrobial peptides (AMPs) are a naturally occurring component of the innate immune response of many organisms and can have activity against both Gram-negative and Gram-positive bacterial species. In order to optimize and improve the direct antimicrobial effect of AMPs against a broad spectrum of bacterial species, novel synthetic hybrids were rationally designed from cecropin A, LL-37 and magainin II. AMPs were selected based on their α-helical secondary structure and fragments of these were analyzed and combined in silico to determine which hybrid peptides would form the best amphipathic cationic α-helices. Four hybrid peptides were synthesized (CaLL, CaMA, LLaMA and MALL) and evaluated for direct antimicrobial activity against a range of bacterial species (Bacillus anthracis, Burkholderia cepacia, Francisella tularensis LVS and Yersinia pseudotuberculosis) alongside the original 'parent' AMPs. The hybrid peptides showed greater antimicrobial effects than the parent AMPs (in one case a parent is completely ineffective while a hybrid based on it removes all traces of bacteria by 3h), although they also demonstrated higher hemolytic properties. Modifications were then carried out to the most toxic hybrid AMP (CaLL) to further improve the therapeutic index. Modifications made to the hybrid lowered hemolytic activity and also lowered antimicrobial activity by various degrees. Overall, this work highlights the potential for rational design and synthesis of improved AMPs that have the capability to be used therapeutically for treatment of bacterial infections.  相似文献   

8.
Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a ‘single-edged sword’ that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.  相似文献   

9.
The yeast‐like algae of the genus Prototheca are ubiquitous saprophytes causing infections in immunocompromised patients and granulomatous mastitis in cattle. Few available therapies and the rapid spread of resistant strains worldwide support the need for novel drugs against protothecosis. Host defence antimicrobial peptides inactivate a wide array of pathogens and are a rich source of leads, with the advantage of being largely unaffected by microbial resistance mechanisms. Three structurally diverse bovine peptides [BMAP‐28, Bac5 and lingual antimicrobial peptide (LAP)] have thus been tested for their capacity to inactivate Prototheca spp. In minimum inhibitory concentration (MIC) assays, they were all effective in the micromolar range against clinical mastitis isolates as well as a Prototheca wickerhamii reference strain. BMAP‐28 sterilized Prototheca cultures within 30–60 min at its MIC, induced cell permeabilization with near 100% release of cellular adenosine triphosphate and resulted in extensive surface blebbing and release of intracellular material as observed by scanning electron microscopy. Bac5 and LAP inactivated Prototheca following 3–6 h incubation at fourfold their MIC and did not result in detectable surface damage despite 70–90% killing, suggesting they act via non‐lytic mechanisms. In circular dichroism studies, the conformation of BMAP‐28, but not that of Bac5 or LAP, was affected by interaction with liposomes mimicking algal membranes. Our results indicate that BMAP‐28, Bac5 and LAP kill Prototheca with distinct potencies, killing kinetics, and modes of action and may be appropriate for protothecal mastitis treatment. In addition, the ability of Bac5 and LAP to act via non‐lytic mechanisms may be exploited for the development of target‐selective drugs. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
通过缬氨酸和精氨酸的交替连接形成β-发卡结构的两条侧链,D-脯氨酸和甘氨酸形成β-转角单元以及侧链末端的两个半胱氨酸连接形成一个二硫键,来设计得到全新的由16残基构成的β-发卡抗菌肽VR。对设计得到的抗菌肽VR的生物学活性进行了检测,主要测定了新型β-发卡抗菌肽VR的最小杀菌浓度、对红细胞的溶血活性、杀菌动力学和盐敏感性。结果发现,VR和蜂毒素具有相似的杀菌活性,而溶血活性远低于蜂毒素,这表明VR比蜂毒素具有更高的细胞选择性。在NaCl的浓度低于100 mmol/L时,VR的杀菌活性没有受到影响;在NaCl的浓度为100 mmol/L时,VR具有50%的杀菌活性。综上可见,VR具有较优异的生物学活性,拥有成为抗生素替代物的发展潜力。  相似文献   

11.
Aims:  Staphylococcal biofilm-associated infections are resistant to conventional antibiotics. Consequently, new agents are needed to treat them. With this aim, we focused on the effector cells (coelomocytes) of the sea urchin Paracentrotus lividus immune system.
Methods and Results:  We tested the activity of the 5-kDa peptide fraction of the cytosol from coelomocytes (5-CC) against a group of Gram-positive, Gram-negative bacteria and fungi. We determined minimal inhibitory concentrations (MICs) ranging from 253·7 to 15·8 mg ml−1. We observed an inhibitory activity and antibiofilm properties of 5-CC against staphylococcal biofilms of reference strains Staphylococcus epidermidis DSM 3269 and Staphylococcus aureus ATCC 29213. The antimicrobial efficacy of 5-CC against the biofilms of clinical strain Staph. epidermidis 1457 was also tested using live/dead staining in combination with confocal laser scanning microscopy. At a sub-MIC concentration (31·7 mg ml−1) of 5-CC the formation of young (6-h old) and mature (24-h old) staphylococcal biofilms was inhibited.
Conclusions:  The biological activity of 5-CC could be attributed to three peptides belonging to the sequence segment 9–41 of a beta-thymosin of P. lividus .
Significance and Impact of the Study:  The effector cells of P. lividus represent an interesting source of marine invertebrates-derived antimicrobial agents in the development of new strategies to treat staphylococcal biofilms.  相似文献   

12.
The purpose of this review was to provide an updated overview on the use of antimicrobial agents in livestock, the associated problems for humans and current knowledge on the effects of reducing resistance in the livestock reservoir on both human health and animal production. There is still limiting data on both use of antimicrobial agents, occurrence and spread of resistance as well as impact on human health. However, in recent years, emerging issues related to methicillin-resistant Staphylococcus aureus, Clostridium difficile, Escherichia coli and horizontally transferred genes indicates that the livestock reservoir has a more significant impact on human health than was estimated 10 years ago, where the focus was mainly on resistance in Campylobacter and Salmonella. Studies have indicated that there might only be a marginal if any benefit from the regular use of antibiotics and have shown that it is possible to substantially reduce the use of antimicrobial agents in livestock production without compromising animal welfare or health or production. In some cases, this should be done in combination with other measures such as biosecurity and use of vaccines. To enable better studies on both the global burden and the effect of interventions, there is a need for global harmonized integrated and continuous surveillance of antimicrobial usage and antimicrobial resistance, preferably associated with data on production and animal diseases to determine the positive and negative impact of reducing antimicrobial use in livestock.  相似文献   

13.
Tachyplesin I is a potent antimicrobial peptide with broad spectrum of antimicrobial activity. It has 2 disulfide bonds and can form 3 disulfide bond isomers. In this study, the structure and antimicrobial activity of 3 tachyplesin I isomers (tachyplesin I, 3C12C, 3C7C) were investigated using molecular dynamic simulations, circular dichroism structural study, as well as antimicrobial activity and hemolysis assay. Our results suggest that in comparison to the native peptide, the 2 isomers (3C12C, 3C7C) have substantial structural and activity variations. The native peptide is in the ribbon conformation, while 3C12C and 3C7C possess remarkably different secondary structures, which are referred as “globular” and “beads” isomers, respectively. The substantially decreased hemolysis effects for these 2 isomers is accompanied by significantly decreased anti‐gram‐positive bacterial activity.  相似文献   

14.
15.
九香虫抗菌肽CcAMP1的分离纯化和抗菌活性检测   总被引:1,自引:0,他引:1  
李尚伟  赵柏松  杜娟 《昆虫学报》2015,58(6):610-616
【目的】从药用昆虫九香虫 Coridius chinensis 中分离纯化抗菌肽,为进一步开发九香虫抗菌肽资源及深入挖掘九香虫的药用功能奠定基础。【方法】用大肠杆菌Escherichia coli 和金黄色葡萄球菌 Staphylococcus aureus 混合物作诱导源刺激九香虫产生抗菌肽,对血淋巴进行提取、凝胶过滤层析、固相萃取及反相色谱纯化,活性组分经质谱测定。对分离得到的这种抗菌肽进行人工合成,并进行抗菌活性检测。【结果】本研究获得一种九香虫抗菌肽CcAMP1,由17个氨基酸残基组成,分子量为1 997.37 u,带1个正电荷,表面有5个疏水氨基酸。对人工合成的CcAMP1进行抗菌活性检测表明,该抗菌肽与九香虫血淋巴一样对金黄色葡萄球菌等革兰氏阳性菌和大肠杆菌等革兰氏阴性菌都有较好的抗菌活性,且对革兰氏阴性菌的抗菌活性更强。【结论】从九香虫中分离得到具有较强抗菌活性的阳离子抗菌肽CcAMP1,有较大的开发利用价值。  相似文献   

16.
Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.  相似文献   

17.
壳聚糖的结构及抗菌作用研究进展   总被引:10,自引:0,他引:10  
成庆利 《生物技术》2006,16(4):88-91
综述了壳聚糖的结构特点、抗菌机理和抗菌特点,并简单介绍了应用方面的研究及存在的问题。  相似文献   

18.
19.
郭丽  刘化鑫  林瑛 《生物工程学报》2021,37(8):2915-2923
抗菌肽是目前最有希望的抗生素替代品,但是使用重组技术生产抗菌肽的策略大多步骤烦琐且价格昂贵,不利于抗菌肽的规模化生产。Oxysterlin 1是一种新型的天蚕素抗菌肽,主要对革兰氏阴性菌有抗菌活性,具有较低的细胞毒性。文中利用一种简单经济的方法在大肠杆菌中实现Oxysterlin 1的表达和纯化。将Oxysterlin 1基因克隆到含有弹性蛋白样多肽Elastin-like polypeptide (ELP) 和蛋白质内含肽 (Intein) 的载体中,构建重组表达质粒pET-ELP-I-Oxysterlin 1。重组蛋白在大肠杆菌中主要以可溶性形式表达,进而通过简单的盐析和pH改变便可对目标小肽进行纯化。最终得到的Oxysterlin 1的产量约为1.2 mg/L,抑菌试验显示出预期活性,为抗菌肽的规模化生产及深入研究其抑菌机理奠定基础。  相似文献   

20.
通过比较6种不同型号的大孔吸附树脂对家蝇蛋白的吸附解吸特性,发现D101大孔吸附树脂的性能优于其他5种,吸附流速、浓度影响大孔吸附树脂的动态吸附性能。D101大孔吸附树脂对未经诱导的家蝇蛋白的吸附量可达217.18mg/g(以干树脂总量为基准),洗脱率为76.48%。吸附后的大孔吸附树脂用15%、35%、55%的乙醇溶液阶段洗脱,各洗脱组分的疏水性逐渐增大,蛋白质含量也明显增加。用E.coli、S.aureus和B.subtilis对各洗脱组分进行抑菌活性测定,抑菌活性随洗脱组分的疏水性增加而增大。测得55%乙醇洗脱组分的抑菌活性最大,其中对E.coli的抑菌圈直径达5.8mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号