首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Based on the strong enhancement effect of procaterol hydrochloride on the electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridine) in an alkaline H3PO4–NaOH buffer solution on a bare Pt electrode, a simple, rapid and sensitive method was developed for the determination of procaterol hydrochloride. The optimum conditions for the enhanced ECL have been developed in detail in this work. Under optimum conditions, the logarithmic ECL enhancement vs. the logarithmic concentration of procaterol hydrochloride is linear over a wide concentration range of 2.0 × 10?7 to 2.0 × 10?4 M (r =  0.9976), with a limit of detection of 1.1 × 10?8 M (S/N =  3), and a relative standard deviation of 2.1% (n =  7, c =  5.0 × 10?6 M). The proposed method was applied to the determination of this drug in tablets with recoveries of 89.7%–98.5%. In addition, a possible mechanism for the enhanced ECL of Ru(bpy)32+, which is caused by ProH, has also been proposed.  相似文献   

6.
A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide–luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide–luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from ‘Y2’ to the flow cell. The linear ranges and limit of detection were 10–100 and 5 ng/mL for isoprenaline hydrochloride, 20–100 and 5 ng/mL for salbutamol sulfate, 8–200 and 1 ng/mL for terbutaline sulfate, 20–100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8–98.5%. The possible CL reaction mechanism of potassium ferricyanide–luminol–β2 adrenergic agonist was discussed from the UV/vis spectra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A simple and rapid flow‐injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5–2500 ng/mL and the detection limit (signal‐to‐noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C18) cartridges for solid‐phase extraction. The recoveries were in the range 99 ± 1 to 104 ± 1%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A new chemiluminescence (CL) method using flow injection has been described for the rapid and sensitive determination of promazine hydrochloride (PMH). The method is based on the CL reaction of PMH with tris(1,10 phenanthroline)ruthenium(II), [Ru(phen)32+] and Ce(IV) in sulfuric acid medium. Effects of chemical variables were investigated employing central composite design and response surface methodology. Under the optimum conditions, the CL intensity was proportional to the concentration of the drug in solution over the ranges 0.020–0.32 and 0.32–32 µg/mL. The limit of detection (signal‐to‐noise ratio = 3) was 0.012 µg/mL. The method was applied successfully to the determination of PMH in drug formulations and human serum (recovery percentages between 96.7 and 105.0%). The relative standard deviation for 11 replicate determinations of 1.5 µg/mL of PMH was 1.7%. The minimum sampling rate was 100 samples per hour. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Oscillating chemiluminescence enhanced by the addition of tri‐n‐propylamine (TPrA) to the typical Belousov–Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'‐bipyridine)(Ru(bpy)32+) was investigated using a luminometry method. The [Ru(bpy)3]2+/TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3]2+/TPrA–BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3]2+/TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a novel chemiluminescent (CL) method for the determination of benzhexol has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between sulfite and acidic cerium(IV). A mechanism for the CL reaction has been proposed on the basis of CL spectra. Under the optimized conditions, the proposed method allows the measurement of benzhexol hydrochloride over the range 0.1–10 μg/mL with a correlation coefficient of 0.9992 (n = 8), a detection limit of 0.02 μg/mL (3σ), and a relative standard deviation for 2.0 μg/mL benzhexol (n = 11) of 1.65%. The utility of this method was demonstrated by determining benzhexol hydrochloride in tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and sensitive flow injection–chemiluminescence (FI–CL) method has been developed for the determination of puerarin, based on the fact that puerarin can greatly inhibit CL of the luminol–H2O2–haemoglobin system. The inhibition of CL intensity was linear to the logarithm of the concentration of puerarin in the range 0.08–10.0 μg/mL (r2 = 0.9912). The limit of detection was 0.05 μg/mL (3σ) and the relative standard deviation (RSD) for 1.0 μg/mL (n = 11) of puerarin solution was 1.4%. Coupled with solid‐phase extraction (SPE) as the sample pretreatment, the determination of puerarin in biological samples and a preliminary pharmocokinetic study of puerarin in rats were performed. The recoveries for plasma and urine at three different concentrations were 89.2–110.0% and 91.4–104.8%, respectively. The pharmacokinetics of puerarin in plasma of rat coincides with the two‐compartment open model. The T1/2α, T1/2β, CL/F, VZ/F, AUC(0 – t), MRT(0 – ∞), Tmax and Cmax were 0.77 ± 0.21 h, 7.55 ± 2.64 h, 2.43 ± 1.02 L/kg/h, 11.40 ± 3.45 L/kg, 56.67 ± 10.65 mg/h/L, 5.04 ± 2.78 h, 1.00 ± 0.35 h and 19.70 ± 4.67 μg/mL, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
《Luminescence》2002,17(2):117-122
The electrogenerated chemiluminescence of Ru(bpy)32+/C2O42? system on a pre‐polarized Au electrode was studied using a potential‐resolved electrochemiluminescence (PRECL) method. Two anodic ECL peaks were observed at 1.22 V (vs. SCE) (EP1), 1.41 V (vs. SCE) (EP2), respectively. The effects of the concentration of oxalate and Ru(bpy)32+, adsorbed sulphur, CO2, O2, pH of the solution and pretreatment of the Au electrode on the two PRECL peaks were examined. The surface state of the pre‐oxidized gold electrode was also studied using the X‐ray photoelectron spectroscopy (XPS) technique. Moreover, comparative studies on i–E and I–E curves were carried out and a possible mechanism involving both the catalytic and the direct electro‐oxidation pathways was proposed for the ECL of Ru(bpy)32+/C2O42? system. EP1 is attributed to the Ru(bpy)32/3+ reaction catalysed by C2O42? to generate Ru(bpy)32+*. EP2 is likely because C2O42? was oxidized at the electrode to form CO2, followed by reaction with Ru(bpy)33+ to generate Ru(bpy)32+*. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, rapid and sensitive method has been developed for the analysis of fexofenadine (FEX) in pharmaceutical formulations, using a tris(1,10‐phenanthroline)–ruthenium(II) [Ru(phen)32+] peroxydisulphate chemiluminescence (CL) system in a multichip device. Various parameters that influence the CL signal intensity were optimized. These included pH, flow rates and concentration of reagents used. Under optimum conditions, a linear calibration curve in the range 0.05–5.0 µg/mL was obtained. The detection limit was found to be 0.001 µg/mL. The procedure was applied to the analysis of FEX in pharmaceutical products and was found to be free from interference from concomitants usually present in these preparations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Siyu Chen  Fang Zhao 《Luminescence》2012,27(4):279-284
A simple, rapid and precise flow‐injection–chemiluminescence (FI–CL) method is presented for the determination of tenoxicam in pharmaceutical preparations and biological samples. The method is based on the weak chemiluminescence signal arising from the reaction of cerium(IV) in a nitric acid medium with sodium hyposulphite being significantly increased by tenoxicam in the presence of sodium dodecyl benzene sulphonate. Several experimental parameters affecting the CL reaction were examined and optimized systematically. Under the optimum conditions, the CL intensity was proportional to the concentration of tenoxicam in the range 7.0 × 10–11–5.0 × 10–8 g/mL. The detection limit was 2.3 × 10–11 g/mL tenoxicam and the relative standard deviation (RSD) was 2.1% for 1.0 × 10–9 g/mL tenoxicam solution (n = 11). The proposed method was applied to the determination of tenoxicam in pharmaceutical preparations, serum and human urine, with satisfactory results. The possible mechanism of the chemiluminescence reaction is also briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A sequential injection (SI) method was developed for the determination of chlorpheniramine (CPA), based on the reaction of this drug with tris(1,10‐phenanthroline)–ruthenium(II) [Ru(phen)32+] and peroxydisulphate (S2O82–) in the presence of light. The instrumental set‐up utilized a syringe pump and a multiposition valve to aspirate the reagents [Ru(phen)32+ and S2O82–] and a peristaltic pump to propel the sample. The experimental conditions affecting the chemiluminescence reaction were systematically optimized, using the univariate approach. Under the optimum conditions linear calibration curves of 0.1–10 µg/ml were obtained. The detection limit was 0.04 µg/ml and the relative standard deviation (RSD) was always < 5%. The procedure was applied to the analysis of CPA in pharmaceutical products and was found to be free from interferences from concomitants usually present in these preparations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Visible oscillating chemiluminescence (CL) of luminol–H2O2–KSCN–CuSO4 was studied using the organic base (2‐hydroxyethyl)trimethylammonium hydroxide. The effect of concentrations of luminol, H2O2, KSCN, CuSO4 and the base were investigated in a batch reactor. This report shows how the concentration of components involved in the oscillating CL system influenced the oscillation period, light amplitude and total time of light emission. The oscillating CL with different bases was also investigated. Results indicated that using 2‐HETMAOH causes regular oscillating CL with nearly the same oscillating period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号