首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF‐EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low‐frequency electric fields (ELF‐EFs), extremely low‐frequency magnetic fields (ELF‐MFs), and RF‐EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guideline levels. Average night‐time ELF‐MFs (long‐term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF‐EMFs above 1000 µW/m2 in 7.1% of households. Highest ELF‐EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF‐MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF‐EMFs were caused by DECT telephone base stations (max = 28979 µW/m2) and mobile phone base stations (max = 4872 µW/m2). Simple reduction measures resulted in an average decrease of 23 nT for ELF‐MFs, 23 V/m for ELF‐EFs, and 246 µW/m2 for RF‐EMFs. A small but statistically significant correlation between ELF‐MF exposure and overall RF‐EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. Bioelectromagnetics 31:200–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
From 2013 to 2018, in‐situ measurements of radiofrequency (RF) electromagnetic fields (EMF) and extremely low‐frequency (ELF) electric and magnetic fields in 317 existing and under‐construction children's playground facilities, in 16 municipalities all over Greece, were carried out by the Greek Atomic Energy Commission (EEAE). These measurements were conducted following legislative framework established in 2009, which requires that compliance with the established exposure limits for EMFs should be verified in playground areas. The results are presented by the value of the electric field (E) and exposure ratio (Λ) for the RF EMF, as well as the value of the electric field (E) and magnetic flux density (B) for the ELF electric and magnetic fields. Statistical analysis tools were applied on measurement data and conclusions have been made, taking into consideration: (i) environment type (urban/suburban), and (ii) vicinity to any transmitting installations. Measurement results correspond to the typical EMF background levels for each environment type. Concerning the environment type, RF EMF, and ELF electric/magnetic field measurements reveal no differentiation between urban and suburban environments. Bioelectromagnetics. 2019;40:602–605. © 2019 Bioelectromagnetics Society.  相似文献   

3.
4.
Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early‐life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole‐body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham‐exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low‐level RF fields in early life may have a persistent and long‐term effect on adult behavior. Bioelectromagnetics. 2019;40:498–511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

5.
It has been claimed that weak extremely low frequency electromagnetic fields (ELF‐EMFs) can affect biochemical reactions and a wide‐ranging body of literature is available on this topic. Nevertheless, the physical nature of these effects remains largely unknown. We investigated the influence of ELF‐EMF on glutamic acid solutions using Fourier transform infrared‐attenuated total reflectance (FTIR‐ATR) spectra. Samples were exposed for 10, 20, or 30 min to a weak EMF generated by Helmoltz coils, and then placed in a spectrometer. After exposure, those solutions that had a pH lower than the isoelectric point tended to show a shift toward the deprotonation of the carboxylic group, while solutions having a pH greater than the isoelectric point showed the deprotonation of the residual amine group. Moreover, at low pH values, we also detected a shift of the δantisym band of the amine. The effects lasted a few minutes after exposure before the native configuration was restored. The spectral modifications were observed after each independent exposure to EMFs, and the same effects were seen by varying the frequencies in the range of 0–7 kHz. Therefore, the hypothesis of the existence of a resonant frequency that has been proposed elsewhere cannot be supported by the results of this study. The most surprising characteristic of this effect is the long‐lasting nature of the perturbation, which is hard to be explained in terms of short‐living excitations in biological matter. Bioelectromagnetics 32:218–225, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The present analysis revisits the impact of extremely low‐frequency magnetic fields (ELF‐MF) on melatonin (MLT) levels in human and rat subjects using both a parametric and non‐parametric approach. In this analysis, we use 62 studies from review articles. The parametric approach consists of a Bayesian logistic regression (LR) analysis and the non‐parametric approach consists of a Support Vector analysis, both of which are robust against spurious/false results. Both approaches reveal a unique well‐ordered pattern, and show that human and rat studies are consistent with each other once the MF strength is restricted to cover the same range (with B ? 50 μT). In addition, the data reveal that chronic exposure (longer than ~22 days) to ELF‐MF appears to decrease MLT levels only when the MF strength is below a threshold of ~30 μT (), i.e., when the man‐made ELF‐MF intensity is below that of the static geomagnetic field. Studies reporting an association between ELF‐MF and changes to MLT levels and the opposite (no association with ELF‐MF) can be reconciled under a single framework. Bioelectromagnetics. 2019;40:539–552. © 2019 Bioelectromagnetics Society.  相似文献   

9.
The fourth course at the International School of Bioelectromagnetics addressed various aspects of the epidemiology of exposure to electromagnetic fields (EMF). In this overview, inspired by the lectures and the discussions among participants, we summarize current knowledge on exposure to EMF and disease risk, with emphasis on studies of use of mobile phones and brain tumours and exposure to power lines and childhood leukaemia. Sources of bias and error hamper straightforward conclusions in some areas and, in order to move forward, improvements in study design and exposure assessment are necessary. The scientific evidence available to date on possible long‐term effects from exposure to ELF and RF fields is not strong enough to revise current protection limits based on the known acute effects of such exposures. Precautionary measures may be considered to reduce ELF exposure of children or exposure to RF during mobile phone use, keeping in mind that it is unclear whether they involve any preventive benefit. Possible health effects from mobile phone use in adults and in children should be investigated further by prospective epidemiological studies with improved exposure assessment and brain tumour incidence rates should be monitored. Further studies on the relation between childhood leukaemia and ELF magnetic fields would be worthwhile if they focus on heavily exposed groups and attempt to minimize possible selection bias. In conclusion, epidemiological studies conducted with appropriate diligence can play a key role in finding the answers. Bioelectromagnetics 30:511–524, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Buildings with indoor transformer stations may serve as a basis for improved epidemiological studies on the health effects of extremely low-frequency magnetic fields (ELF MFs). Previous studies have shown that ELF MF exposure can be adequately assessed based on the fact that MF levels are high in apartments directly above transformers. In this paper, we describe the creation of a registry of Finnish residential buildings with built-in transformer stations and discuss its usability in epidemiological studies. Information obtained from electric utilities and building blueprints were used to identify 677 buildings in which an apartment was located above or adjacent to a transformer station. All apartments in these buildings were classified into exposure categories based on their location in relation to the transformer. Residential histories of these buildings were obtained from the Population Register Centre. Out of the 287,668 individuals who have resided in the buildings, 9,126 of them have resided in an apartment located directly above a transformer station. All information was collected without contacting residents, thus avoiding selection bias. The registry can be linked with data from high-quality nationwide registries to confirm or challenge the reported associations of ELF MF exposure and diseases such as cancer, miscarriage, and Alzheimer's disease. Bioelectromagnetics. 2020;41:34–40 © 2019 Bioelectromagnetics Society.  相似文献   

11.
Extremely low frequency (ELF, <300 Hz) magnetic fields (MF) have been reported to modulate cognitive performance in humans. However, little research exists with MF exposures comparable to the highest levels experienced in occupations like power line workers and industrial welders. This research aims to evaluate the impact of a 60 Hz, 3 mT MF on human cognitive performance. Ninety‐nine participants completed the double‐blind protocol, performing a selection of psychometric tests under two consecutive MF exposure conditions dictated by assignment to one of three groups (sham/sham, MF exposure/sham, or sham/MF exposure). Data were analyzed using a 3 × 2 mixed model analysis of variance. Performance between repetitions improved in 11 of 15 psychometric parameters (practice effect). A significant interaction effect on the digit span forward test (F = 5.21, P < 0.05) revealed an absence of practice effects for both exposure groups but not the control group. This memory test indicates MF‐induced abolition of the improvement associated with practice. Overall, this study does not establish any clear MF effect on human cognition. It is speculated that an ELF MF may interfere with the neuropsychological processes responsible for this short‐term learning effect supported by brain synaptic plasticity. Bioelectromagnetics. Bioelectromagnetics 32:620–633, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Are environmental electromagnetic fields genotoxic?   总被引:3,自引:0,他引:3  
Crumpton MJ  Collins AR 《DNA Repair》2004,3(10):1385-1387
Long-term exposure to extremely-low-frequency electromagnetic fields (ELF EMFs) greater than 0.4 microT has been linked, by epidemiological studies, to a small elevated risk of childhood leukaemia. Laboratory-based experiments have been claimed to show that ELF EMFs induce a variety of biological responses, although these claims are controversial. Recent experiments by Ivancsits et al. [Mutat. Res. 519 (2002) 1; Int. Arch. Occup. Environ. Health 76 (2003) 431; Mech. Age. Dev. 124 (2003) 847; H.W. Rüdiger, S. Ivancsits, E. Diem, O. Jahn, Genotoxic effects of ELF-EMF on human cells in vitro, Bioelectromagnetics Society 25th Annual Meeting, Maui, USA, 2003] suggest that ELF EMFs are genotoxic, on the basis of observations that intermittent exposures induce single-strand breaks (SSB) and double-strand DNA breaks (DSB) in the DNA of cultured human fibroblasts. The implications of these findings are discussed.  相似文献   

13.
The aim of this study was to assess the influence of cisplatin and an extremely low frequency electromagnetic field (ELF‐EMF) on antioxidant enzyme activity and the lipid peroxidation ratio, as well as the level of DNA damage and reactive oxygen species (ROS) production in AT478 carcinoma cells. Cells were cultured for 24 and 72 h in culture medium with cisplatin. Additionally, the cells were irradiated with 50 Hz/1 mT ELF‐EMF for 16 min using a solenoid as a source of the ELF‐EMF. The amount of ROS, superoxide dismutase (SOD) isoenzyme activity, glutathione peroxidase (GSH‐Px) activity, DNA damage, and malondialdehyde (MDA) levels were assessed. Cells that were exposed to cisplatin exhibited a significant increase in ROS and antioxidant enzyme activity. The addition of ELF‐EMF exposure to cisplatin treatment resulted in decreased ROS levels and antioxidant enzyme activity. A significant reduction in MDA concentrations was observed in all of the study groups, with the greatest decrease associated with treatment by both cisplatin and ELF‐EMF. Cisplatin induced the most severe DNA damage; however, when cells were also irradiated with ELF‐EMF, less DNA damage occurred. Exposure to ELF‐EMF alone resulted in an increase in DNA damage compared to control cells. ELF‐EMF lessened the effects of oxidative stress and DNA damage that were induced by cisplatin; however, ELF‐EMF alone was a mild oxidative stressor and DNA damage inducer. We speculate that ELF‐EMF exerts differential effects depending on the exogenous conditions. This information may be of value for appraising the pathophysiologic consequences of exposure to ELF‐EMF. Bioelectromagnetics 33:641–651, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Adult stem cells are considered multipotent. Especially, human bone marrow‐derived mesenchymal stem cells (hBM‐MSCs) have the potential to differentiate into nerve type cells. Electromagnetic fields (EMFs) are widely distributed in the environment, and recently there have been many reports on the biological effects of EMFs. hBM‐MSCs are weak and sensitive pluripotent stem cells, therefore extremely low frequency‐electromagnetic fields (ELF‐EMFs) could be affect the changes of biological functions within the cells. In our experiments, ELF‐EMFs inhibited the growth of hBM‐MSCs in 12 days exposure. Their gene level was changed and expression of the neural stem cell marker like nestin was decreased but the neural cell markers like MAP2, NEUROD1, NF‐L, and Tau were induced. In immunofluorescence study, we confirmed the expression of each protein of neural cells. And also both oligodendrocyte and astrocyte related proteins like O4 and GFAP were expressed by ELF‐EMFs. We suggest that EMFs can induce neural differentiation in BM‐MSCs without any chemicals or differentiation factors. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

15.
The effects of long‐term extremely low‐frequency magnetic field (ELF‐MF) exposure on bone formation and biochemical markers were investigated in ovariectomized rats. Sixty mature female Sprague–Dawley rats were randomly divided into four different groups (n = 15): (i) unexposed control (CTL); (ii) ovariectomized only (OVX); (iii) non‐ovariectomized, exposed (SHAM + ELF‐MF); and (iv) ovariectomized, exposed (OVX + ELF‐MF). The third and fourth groups were exposed to 1.5 mT ELF‐MF for 4 h a day for 6 months. Bone mineral density (BMD) was determined using dual energy X‐ray absorption (DEXA) measurements. The formation and resorption of bone were evaluated using bone‐specific alkaline phosphatase (BAP), osteocalcin, osteoprotogerin, and N‐telopeptide. After 6 months of ELF‐MF therapy, BMD values were significantly lower in the OVX group and higher in the OVX + ELF‐MF and SHAM + ELF‐MF groups than they were before therapy (P < 0.001). Although there was no significant difference in BMD values among the groups before therapy, the BMD values increased significantly after 6 months in the OVX + ELF‐MF and SHAM + ELF‐MF groups and were reduced in the OVX group compared to the CTL group (P < 0.001). The concentrations of BAP, osteocalcin, osteoprotogerin, and N‐telopeptide in the three experimental groups also changed in a significant way compared to the CTL group. The results of the present study suggest that osteoporosis can be inhibited by ELF‐MF stimulation treatments. It was also concluded that ELF‐MF may be useful in the prevention of osteoporosis in ovariectomized rats. Bioelectromagnetics 33:543–549, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
This study aims to assess the levels of extremely low frequency magnetic fields (ELF‐MF) emitted from portable hand‐held fans (HHFs) and their principal frequency and to identify factors influencing these levels. We collected a total of eleven models of HHF and monitored the ELF‐MF as a function of fan speed and distance from the fan. EMDEX II was used to monitor the ELF‐MF. An SMP2 EMF‐meter equipped with a P400 field probe was used to determine the levels of ELF‐MF and the frequency spectrum. Ten of the fans, excluding only one bladeless‐fan model, emitted a high level of ELF‐MF near the source of the HHF direct‐current motor. The maximum measured level of ELF‐MF ranged from 14.07 to 218.7 µT. All measurements of the ELF‐MF taken within 10 cm from the HHFs showed values higher than 1.0 µT. ELF‐MF levels were found to decrease markedly with distance, regardless of the HHF product. The level of ELF‐MF rose noticeably with increased fan speed. The speed of and distance from the HHF significantly influenced the level of ELF‐MF. All principal frequencies ranged from 1 to 300 Hz, which falls in the typical range of ELF. Bioelectromagnetics. 2019;40:569–577. © 2019 Bioelectromagnetics Society.  相似文献   

17.
Exposure to extremely low‐frequency magnetic fields (ELF‐MFs) has been classified by the International Agency for Research on Cancer (IARC) as “possibly carcinogenic to humans,” based on limited scientific evidence concerning childhood leukemia. This assessment emphasized the lack of appropriate animal models recapitulating the natural history of this disease. Childhood B‐cell acute lymphoblastic leukemia (B‐ALL) is the result of complex interactions between genetic susceptibility and exposure to exogenous agents. The most common chromosomal alteration is the ETV6‐RUNX1 fusion gene, which confers a low risk of developing the malignancy by originating a preleukemic clone requiring secondary hits for full‐blown disease to appear. To develop potential prophylactic interventions, we need to identify the environmental triggers of the second hit. Recently, we generated a B‐ALL mouse model of the human ETV6‐RUNX1+ preleukemic state. Here, we present the results from the ARIMMORA pilot study, obtained by exposing 34 Sca1‐ETV6‐RUNX1 mice (vs. 27 unexposed) to a 50 Hz magnetic field of 1.5 mT with both fundamental and harmonic content, with an on/off cycle of 10 min/5 min, for 20 h/day, from conception until 3 months of age. Mice were monitored until 2 years of age and peripheral blood was periodically analyzed by flow cytometry. One of the exposed mice developed B‐ALL while none of the non‐exposed did. Although the results are statistically non‐significant due to the limited number of mice used in this pilot experiment, overall, the results show that the newly developed Sca1‐ETV6‐RUNX1 mouse can be successfully used for ELF‐MF exposure studies about the etiology of childhood B‐ALL. Bioelectromagnetics. 2019;40:343–353. © 2019 Bioelectromagnetics Society.  相似文献   

18.
Several reports have shown that weak, extremely-low-frequency (ELF), pulsed magnetic fields (PMFs) can adversely affect the early embryonic development of the chick. In this study, freshly fertilized chicken eggs were exposed during the first 48 h of postlaying incubation to PMFs with 100 Hz repetition rate, 1.0 μT peak-to-peak amplitude, and 500 μs pulse duration. Two different pulse waveforms were used, having rise and fall times of 85 μs (PMF-A) or 2.1 μs (PMF-B). It has been reported that, with 2 day exposure, these fields significantly increase the proportion of developmental abnormalities. In the present study, following exposure, the eggs were allowed to incubate for an additional 9 days in the absence of the PMFs. The embryos were taken out of the eggs and studied blind. Each of the two PMF-exposed groups showed an excess in the percentage of developmental anomalies compared with the respective sham-exposed samples. This excess of anomalies was not significant for the PMF-A-treated embryos (P = 0.173), whereas it was significant for the PMF-B-exposed group (P = 0.007), which showed a particularly high rate of early embryonic death. These results reveal that PMFs can induce irreversible developmental alterations and confirm that the pulse waveform can be a determinant factor in the embryonic response to ELF magnetic fields. The data also validate previous work based on the study of PMFs' effects at day 2 of embryonic development under field exposure. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Much of the research and reviews on extremely low frequency (ELF) electric and magnetic fields (EMFs) have focused on magnetic rather than electric fields. Some have considered such focus to be inappropriate and have argued that electric fields should be part of both epidemiologic and laboratory work. This paper fills the gap by systematically and critically reviewing electric‐fields literature and by comparing overall strength of evidence for electric versus magnetic fields. The review of possible mechanisms does not provide any specific basis for focusing on electric fields. While laboratory studies of electric fields are few, they do not indicate that electric fields should be the exposure of interest. The existing epidemiology on residential electric‐field exposures and appliance use does not support the conclusion of adverse health effects from electric‐field exposure. Workers in close proximity to high‐voltage transmission lines or substation equipment can be exposed to high electric fields. While there are sporadic reports of increase in cancer in some occupational studies, these are inconsistent and fraught with methodologic problems. Overall, there seems little basis to suppose there might be a risk for electric fields, and, in contrast to magnetic fields, and with a possible exception of occupational epidemiology, there seems little basis for continued research into electric fields. Bioelectromagnetics 31:89–101, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
This study assessed exposure to extremely low frequency (ELF) magnetic fields of welders and other metal workers and compared exposure from different welding processes. Exposure to ELF magnetic fields was measured for 50 workers selected from a nationwide cohort of metal workers and 15 nonrandomly selected full-time welders in a shipyard. The measurements were carried out with personal exposure meters during 3 days of work for the metal workers and 1 day of work for the shipyard welders. To record a large dynamic range of ELF magnetic field values, the measurements were carried out with “high/low” pairs of personal exposure meters. Additional measurements of static magnetic fields at fixed positions close to welding installations were done with a Hall-effect fluxmeter. The total time of measurement was 1273 hours. The metal workers reported welding activity for 5.8% of the time, and the median of the work-period mean exposure to ELF magnetic fields was 0.18 μT. DC metal inert or active gas welding (MIG/MAG) was used 80% of the time for welding, and AC manual metal arc welding (MMA) was used 10% of the time. The shipyard welders reported welding activity for 56% of the time, and the median and maximum of the workday mean exposure to ELF magnetic fields was 4.70 and 27.5 μT, respectively. For full-shift welders the average workday mean was 21.2 μT for MMA welders and 2.3 μT for MIG/MAG welders. The average exposure during the effective time of welding was estimated to be 65 μT for the MMA welding process and 7 μT for the MIG/MAG welding process. The time of exposure above 1 μT was found to be a useful measure of the effective time of welding. Large differences in exposure to ELF magnetic fields were found between different groups of welders, depending on the welding process and effective time of welding. MMA (AC) welding caused roughly 10 times higher exposure to ELF magnetic fields compared with MIG/MAG (DC) welding. The measurements of static fields suggest that the combined exposure to static and ELF fields of MIG/MAG (DC) welders and the exposure to ELF fields of MMA (AC) welders are roughly of the same level. Bioelectromagnetics 18:470–477, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号