首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High‐throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high‐throughput mini‐bioreactor system viz. the Advanced Microscale Bioreactor (ambr15TM), to perform process characterization in less than a month and develop an input control strategy. As a pre‐requisite to process characterization, a scale‐down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale‐down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15TM system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1623–1632, 2015  相似文献   

3.
The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high‐throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high‐throughput disruption methods exist. The development of an automated, miniaturized, high‐throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high‐pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA‐based methods to mimic large‐scale homogenization processes. These results demonstrate that AFA‐mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130–140, 2018  相似文献   

4.
Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF‐1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale‐up using hen egg‐white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell‐based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body‐derived protein products. Biotechnol. Bioeng. 2009;103: 329–340. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Age is the strongest risk factor for many diseases including neurodegenerative disorders, coronary heart disease, type 2 diabetes and cancer. Due to increasing life expectancy and low birth rates, the incidence of age‐related diseases is increasing in industrialized countries. Therefore, understanding the relationship between diseases and aging and facilitating healthy aging are major goals in medical research. In the last decades, the dimension of biological data has drastically increased with high‐throughput technologies now measuring thousands of (epi) genetic, expression and metabolic variables. The most common and so far successful approach to the analysis of these data is the so‐called reductionist approach. It consists of separately testing each variable for association with the phenotype of interest such as age or age‐related disease. However, a large portion of the observed phenotypic variance remains unexplained and a comprehensive understanding of most complex phenotypes is lacking. Systems biology aims to integrate data from different experiments to gain an understanding of the system as a whole rather than focusing on individual factors. It thus allows deeper insights into the mechanisms of complex traits, which are caused by the joint influence of several, interacting changes in the biological system. In this review, we look at the current progress of applying omics technologies to identify biomarkers of aging. We then survey existing systems biology approaches that allow for an integration of different types of data and highlight the need for further developments in this area to improve epidemiologic investigations.  相似文献   

6.
Effective clone selection is a crucial step toward developing a robust mammalian cell culture production platform. Currently, clone selection is done by culturing cells in well plates and picking the highest producers. Ideally, clone selection should be done in a stirred tank bioreactor as this would best replicate the eventual production environment. The actual number of clones selected for future evaluation in bioreactors at bench‐scale is limited by the scale‐up and operational costs involved. This study describes the application of miniaturized stirred high‐throughput bioreactors (35 mL working volume; HTBRs) with noninvasive optical sensors for clone screening and selection. We investigated a method for testing several subclones simultaneously in a stirred environment using our high throughput bioreactors (up to 12 clones per HTBR run) and compared it with a traditional well plate selection approach. Importantly, it was found that selecting clones solely based on results from stationary well plate cultures could result in the chance of missing higher producing clones. Our approach suggests that choosing a clone after analyzing its performance in a stirred bioreactor environment is an improved method for clone selection. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
Multi‐factorial experimentation is essential in understanding the link between mammalian cell culture conditions and the glycoprotein product of any biomanufacturing process. This understanding is increasingly demanded as bioprocess development is influenced by the Quality by Design paradigm. We have developed a system that allows hundreds of micro‐bioreactors to be run in parallel under controlled conditions, enabling factorial experiments of much larger scope than is possible with traditional systems. A high‐throughput analytics workflow was also developed using commercially available instruments to obtain product quality information for each cell culture condition. The micro‐bioreactor system was tested by executing a factorial experiment varying four process parameters: pH, dissolved oxygen, feed supplement rate, and reduced glutathione level. A total of 180 micro‐bioreactors were run for 2 weeks during this DOE experiment to assess this scaled down micro‐bioreactor system as a high‐throughput tool for process development. Online measurements of pH, dissolved oxygen, and optical density were complemented by offline measurements of glucose, viability, titer, and product quality. Model accuracy was assessed by regressing the micro‐bioreactor results with those obtained in conventional 3 L bioreactors. Excellent agreement was observed between the micro‐bioreactor and the bench‐top bioreactor. The micro‐bioreactor results were further analyzed to link parameter manipulations to process outcomes via leverage plots, and to examine the interactions between process parameters. The results show that feed supplement rate has a significant effect (P < 0.05) on all performance metrics with higher feed rates resulting in greater cell mass and product titer. Culture pH impacted terminal integrated viable cell concentration, titer and intact immunoglobulin G titer, with better results obtained at the lower pH set point. The results demonstrate that a micro‐scale system can be an excellent model of larger scale systems, while providing data sets broader and deeper than are available by traditional methods. Biotechnol. Bioeng. 2009; 104: 1107–1120. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Parallel miniaturized stirred tank bioreactors are an efficient tool for "high-throughput bioprocess design." As most industrial bioprocesses are pH-controlled and/or are operated in a fed-batch mode, an exact scale-down of these reactions with continuous dosing of fluids into the miniaturized bioreactors is highly desirable. Here, we present the development, characterization, and application of a novel concept for a highly integrated microfluidic device for a bioreaction block with 48 parallel milliliter-scale stirred tank reactors (V = 12 mL). The device consists of an autoclavable fluidic section to dispense up to three liquids individually per reactor. The fluidic section contains 144 membrane pumps, which are magnetically driven by a clamped-on actuator section. The micropumps are designed to dose 1.6 μL per pump lift. Each micropump enables a continuous addition of liquid with a flow rate of up to 3 mL h(-1) . Viscous liquids up to a viscosity of 8.2 mPa s (corresponds to a 60% v/v glycerine solution) can be pumped without changes in the flow rates. Thus, nearly all feeding solutions can be delivered, which are commonly used in bioprocesses. The functionality of the first prototype of this microfluidic device was demonstrated by double-sided pH-controlled cultivations of Saccharomyces cerevisiae based on signals of fluorimetric sensors embedded at the bottom of the bioreactors. Furthermore, fed-batch cultivations with constant and exponential feeding profiles were successfully performed. Thus, the presented novel microfluidic device will be a useful tool for parallel and, thus, efficient optimization of controlled fed-batch bioprocesses in small-scale stirred tank bioreactors. This can help to reduce bioprocess development times drastically.  相似文献   

9.
Multivariate data analysis (MVDA) is a highly valuable and significantly underutilized resource in biomanufacturing. It offers the opportunity to enhance understanding and leverage useful information from complex high‐dimensional data sets, recorded throughout all stages of therapeutic drug manufacture. To help standardize the application and promote this resource within the biopharmaceutical industry, this paper outlines a novel MVDA methodology describing the necessary steps for efficient and effective data analysis. The MVDA methodology is followed to solve two case studies: a “small data” and a “big data” challenge. In the “small data” example, a large‐scale data set is compared to data from a scale‐down model. This methodology enables a new quantitative metric for equivalence to be established by combining a two one‐sided test with principal component analysis. In the “big data” example, this methodology enables accurate predictions of critical missing data essential to a cloning study performed in the ambr15 system. These predictions are generated by exploiting the underlying relationship between the off‐line missing values and the on‐line measurements through the generation of a partial least squares model. In summary, the proposed MVDA methodology highlights the importance of data pre‐processing, restructuring, and visualization during data analytics to solve complex biopharmaceutical challenges.  相似文献   

10.
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed‐batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled‐up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale‐up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58–68, 2018  相似文献   

11.
Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr?) is an automated micro‐bioreactor system with miniature single‐use bioreactors with a 10–15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in‐line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr? resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr? was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr? system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:718–727, 2014  相似文献   

12.
Bioprocess scale‐up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell‐free mixing studies were performed in production scale 5,000‐L bioreactors to evaluate scale‐up issues. Using the current bioreactor configuration, the 5,000‐L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5‐ and 20‐L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000‐L configuration can only support a maximum viable cell density of 7 × 106 cells mL?1. Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000‐L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing‐related engineering parameters in the 5,000‐L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed‐batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000‐L bioreactors may need optimizing to mitigate the risk of different performance upon process scale‐up. Biotechnol. Bioeng. 2009;103: 733–746. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high‐throughput process development (HTPD) strategy implementing several high‐throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high‐throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high‐throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high‐throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:626–635, 2014  相似文献   

14.
Large‐scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2‐Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large‐scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N‐glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large‐scale bioreactors.  相似文献   

15.
16.
The major challenge in the selection process of recombinant cell lines for the production of biologics is the choice, early in development, of a clonal cell line presenting a high productivity and optimal cell growth. Most importantly, the selected candidate needs to generate a product quality profile which is adequate with respect to safety and efficacy and which is preserved across cell culture scales. We developed a high‐throughput screening and selection strategy of recombinant cell lines, based on their productivity in shaking 96‐deepwell plates operated in fed‐batch mode, which enables the identification of cell lines maintaining their high productivity at larger scales. Twelve recombinant cell lines expressing the same antibody with different productivities were selected out of 470 clonal cell lines in 96‐deepwell plate fed‐batch culture. They were tested under the same conditions in 50 mL vented shake tubes, microscale and lab‐scale bioreactors in order to confirm the maintenance of their performance at larger scales. The use of a feeding protocol and culture conditions which are essentially the same across the different scales was essential to maintain productivity and product quality profiles across scales. Compared to currently used approaches, this strategy has the advantage of speeding up the selection process and increases the number of screened clones for getting high‐producing recombinant cell lines at manufacturing scale with the desired performance and quality. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:160–170, 2016  相似文献   

17.
With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench‐top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high‐throughput (HT) technology for process development. One such high‐throughput system is the SimCell? platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell? micro‐bioreactor technology for fed‐batch cultivation of a GS‐CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas‐permeable chambers based on a micro‐fluidic design, with six micro‐bioreactors (MBs) per micro‐bioreactor array (MBA). Online, non‐invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3‐ and 100‐L bioreactor scales. The results of the study demonstrate that the SimCell? platform operated under fed‐batch conditions could support viable cell concentrations up to least 12 × 106 cells/mL. In addition, both intra‐MB (MB to MB) as well as intra‐MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra‐MB and ‐MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) × 100. The % CV values for most intra‐MB and intra‐MBA measurements were generally under 10% and the intra‐MBA values were slightly lower than those for intra‐MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench‐top, and pilot scale bioreactor cultivations and found to be within ±20% of the historical averages. Biotechnol. Bioeng. 2010; 106: 57–67. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
The adoption of disposable bioreactor technology as an alternate to traditional nondisposable technology is gaining momentum in the biotechnology industry. Evaluation of current disposable bioreactors systems to sustain high intensity fed-batch mammalian cell culture processes needs to be explored. In this study, an assessment was performed comparing single-use bioreactors (SUBs) systems of 50-, 250-, and 1,000-L operating scales with traditional stainless steel (SS) and glass vessels using four distinct mammalian cell culture processes. This comparison focuses on expansion and production stage performance. The SUB performance was evaluated based on three main areas: operability, process scalability, and process performance. The process performance and operability aspects were assessed over time and product quality performance was compared at the day of harvest. Expansion stage results showed disposable bioreactors mirror traditional bioreactors in terms of cellular growth and metabolism. Set-up and disposal times were dramatically reduced using the SUB systems when compared with traditional systems. Production stage runs for both Chinese hamster ovary and NS0 cell lines in the SUB system were able to model SS bioreactors runs at 100-, 200-, 2,000-, and 15,000-L scales. A single 1,000-L SUB run applying a high intensity fed-batch process was able to generate 7.5 kg of antibody with comparable product quality.  相似文献   

19.
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell‐based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex‐vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi‐analytical methods, some of them time‐consuming. The present work evaluates the use of mid‐infrared (MIR) spectroscopy, through rapid and economic high‐throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno‐free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:447–455, 2016  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号