首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In insects, a steroid hormone, 20-hydroxyecdysone (20E), plays important roles in the regulation of developmental transitions by initiating signaling cascades via the ecdysone receptor (EcR). Although 20E has been well characterized as the molting hormone, its precursor ecdysone (E) has been considered to be a relatively inactive compound because it has little or no effect on classic EcR mediated responses. I found that feeding E to wild-type third instar larvae of Drosophila melanogaster accelerates the metamorphic timing, which results in elevation of lethality during metamorphosis and reduced body size, while 20E has only a minor effect. The addition of a juvenile hormone analog (JHA) to E impeded their precocious pupariation and thereby rescued the reduced body size. The ability of JHA impeding the effect of E was not observed in the Methoprene-tolerant (Met) and germ-cell expressed (gce) double mutant animals lacking JH signaling, indicating that antagonistic action of JH against E is transduced via a primary JH receptor, Met, or a product of its homolog, Gce. I also found that L3 larvae are susceptible to E around the time when they reach their minimum viable weight. These results indicate that E, and not just 20E, is also essential for proper regulation of developmental timing and body size. Furthermore, the precocious pupariation triggered by E is impeded by the action of JH to ensure that animals attain body size to survive metamorphosis.  相似文献   

2.
Juvenile hormone(JH),a growth regulator,inhibits ecdysteroid-induced meta-morphosis and controls insect development and diapause.Methoprene-tolerant(Met)and Krippel homolog I(Kr-h1)are two proteins involved in JH action.To gain some insight into their function in development of Sitodiplosis mosellana,an insect pest undergoing obligatory larval diapause at the mature 3rd instar stage,we cloned full-length complemen-tary DNAs of Met and Kr-h1 from this specics.SmMet encoded a putative protein,which contained three domains typical of the bHLH-PAS family and eight conserved amino acid residues important for JH binding.SmKr-h1 encoded a protein showing high sequence homology to its counterparts in other specics,and contained all eight highly conserved Zn-finger motifs for DNA-binding.Expression patterns of SmMet and SmKr hl were de-velopmentally regulated and JH III responsive as well.Their mRNA abundance increased as larvae entered carly 3rd instar,pre-diapause and maintenance stages,and peaked during post-diapause quiescence,a pattern correlated with JH titers in this species.Different from reduced expression of SmMer,SmKr-h1 mRNA increased at mid-to-late period of post-diapause development.Topical application of JH II on diapausing larvac also induced the two genes in a dose-dependent manner.Expression of SmuMer and SmKr-h1 clearly declined in the pre-pupal phase,and was significantly higher in female adults than male adults.These results suggest that JH-responsive SmMet and SmKr-h1 might play key roles in diapause induction and maintenance as well as in post-diapause quiescence and adult reproduction,whereas metamorphosis from larvae to pupac might be correlated with their reduced expression.  相似文献   

3.
保幼激素(juvenile hormone, JH)是昆虫内分泌系统中的关键激素之一,对昆虫生长发育、变态、繁殖起着重要的调控作用。近年来有关JH的分子作用机制取得了极大的进展,主要得益于JH受体的鉴定,大量研究表明JH可通过胞内受体和膜受体两个途径来发挥生理调控功能。本文将从JH胞内受体Met的发现及鉴定、Met转录活性的调控因素、Met功能研究进展,以及Met作为JH受体在JH激动剂及拮抗剂筛选中的应用等方面对JH胞内受体的研究进展进行重点阐述;同时综述了有关JH膜受体的信号通路以及膜受体与核受体的互作等方面的研究进展。  相似文献   

4.
Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr‐h1 double‐stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr‐h1 by Nos‐Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.  相似文献   

5.
Metamorphosis in insects is regulated by juvenile hormone (JH) and ecdysteroids. The mechanism of 20-hydroxyecdysone (20E), but not of JH action, is well understood. A basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family member, methoprene tolerant (Met), plays an important role in JH action. Microarray analysis and RNA interference (RNAi) were used to identify 69 genes that require Met for their hydroprene-regulated expression in the red flour beetle, Tribolium castaneum. Quantitative real time PCR analysis confirmed microarray data for 13 of the 16 hydroprene-response genes tested. The members of the bHLH-PAS family often function as heterodimers to regulate gene expression and Met is a member of this family. To determine whether other members of the bHLH-PAS family are required for the expression of JH-response genes, we employed RNAi to knockdown the expression of all 11 members of the bHLH-PAS family and studied the expression of JH-response genes in RNAi insects. These studies showed that besides Met, another member of this family, steroid receptor co-activator (SRC) is required for the expression of 15 JH-response genes tested. Moreover, studies in JH responsive Aag-2 cells revealed that Aedes aegypti homologues of both Met and SRC are required for the expression of the JH-response gene, kr-h1, and SRC is required for expression of ecdysone-response genes. These data suggest the steroid receptor co-activator plays key roles in both JH and 20E action suggesting that this may be an important molecule that mediates cross-talk between JH and 20E to prevent metamorphosis.  相似文献   

6.
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone''s vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.  相似文献   

7.
王雪丽  李珊  吕向阳  邹振 《昆虫学报》2022,65(4):512-521
吸血昆虫是可以传播病原微生物的一类节肢动物,包括蚊虫、白蛉、蠓、猎蝽、跳蚤等。由于其特殊的吸血习性,它们成为了疟疾、登革热、丝虫病、锥虫病等急性传染性疾病的媒介载体。虫媒疾病具有传播速度快、扩散面积广和危害重等特点,不仅严重危害人类健康,还容易造成巨大的经济损失。由于针对虫媒传染病的药物匮乏以及虫媒病原对化学药物抗性的不断增加,阻断吸血昆虫的生殖成为控制虫媒疾病传播的有效措施。保幼激素(juvenile hormone, JH)和20-羟基蜕皮激素(20-hydroxyecdysone, 20E)在昆虫生殖过程中扮演着重要的角色。JH与胞内受体复合物Met/Tai结合后调控JH/Met靶基因表达,进而促进卵黄发生过程,为昆虫之后的吸血及产卵提供了必要条件;20E胞内受体为EcR/USP组成的异源二聚体,两者结合后激活下游基因表达,诱导卵黄原蛋白(vitellogenin, Vg)合成,为发育的卵巢提供营养。营养信号通路(胰岛素信号通路以及氨基酸介导的雷帕霉素靶蛋白信号通路)同样可以激活Vg合成,促进昆虫生殖;此外,营养信号通路与JH和20E之间可以相互作用共同调控吸血昆虫发育和繁殖。碳水化合物代谢以及脂代谢等能量代谢过程是昆虫生殖过程中主要能量来源,可以满足吸血昆虫生殖发育不同阶段极高的能量需求。研究表明,JH和20E信号通路在能量代谢过程中起着重要的调控作用;微小RNA在蚊虫这一类吸血昆虫中被证明与肠道微生物稳态、血液消化以及脂代谢等生理学过程密切相关,进一步影响了蚊虫卵巢发育。近年来,随着分子生物学及测序技术的革新,吸血昆虫生殖调控机制的研究不断取得新的进展。本文主要阐述了吸血昆虫生殖调控的分子机制研究进展,以期为通过调控吸血昆虫生殖的方法以阻断病原传播提供重要线索。  相似文献   

8.
周树堂  郭伟  宋佳晟 《昆虫知识》2012,49(5):1087-1094
保幼激素(juvenile hormone,JH)和蜕皮激素(20-hydroxyecdysone,20E)是协同调控昆虫发育、变态与生殖的两个重要激素。由于20E的主要分子作用机制已经比较明了,揭示JH的分子作用机制成为过去20多年来昆虫学领域研究的一个重点和难点。国内外多个研究团队利用赤拟谷盗Tribolium castaneum、果蝇Drosophilamelanogaster、烟草天蛾Manduca sexta等为模式,在JH受体的鉴定、JH在昆虫发育变态和生殖中的分子调控机制以及JH与20E在分子水平上的交互作用等方面开展了大量的研究工作,本文就近几年在这些方面取得的主要研究进展作一个综述。  相似文献   

9.
Konopova B  Smykal V  Jindra M 《PloS one》2011,6(12):e28728
Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.  相似文献   

10.
Comparing thyroid and insect hormone signaling   总被引:1,自引:1,他引:0  
Transitions between different states of development, physiology,and life history are typically mediated by hormones. In insects,metamorphosis and reproductive maturation are regulated by aninteraction between the sesquiterpenoid juvenile hormone (JH)and the steroid 20-hydroxy-ecdysone (20E). In vertebrates andsome marine invertebrates, the lipophilic thyroid hormones (THs)affect metamorphosis and other life history transitions. Interestingly,when applied to insects, THs can physiologically mimic manyfacets of JH action, suggesting that the molecular actions ofTHs and JH/20E might be similar. Here we discuss functionalparallels between TH and JH/20E signaling in insects, with aparticular focus on the fruit fly, Drosophila melanogaster,a genetically and physiologically tractable model system. Comparingthe effects of THs with the well defined physiological rolesof insect hormones such as JH and 20E in Drosophila might provideimportant insights into hormone function and the evolution ofendocrine signaling.  相似文献   

11.
12.
13.
14.
15.
16.
17.
昆虫蜕皮激素信号转导途径研究进展   总被引:1,自引:0,他引:1  
赵小凡 《生命科学》2010,(12):1208-1214
蜕皮与变态是全变态昆虫典型的发育特征。调控昆虫蜕皮与变态的激素主要有蜕皮激素和保幼激素。目前已经阐明了蜕皮激素的核受体EcR及部分核信号转导途径,但蜕皮激素是否存在膜受体及膜信号转导途径研究很少。研究证明,蜕皮激素存在细胞质中的信号转导分子和途径,蜕皮激素通过NTF2和Ran调控EcR入核启动基因转录。蜕皮激素使细胞质中的热休克蛋白Hsc70部分入核与USP结合启动基因转录。蜕皮激素通过蛋白激酶PKC使伴侣蛋白calponin磷酸化,参与蜕皮激素信号途径的基因转录。这些研究结果说明蜕皮激素除了有核受体和核受体信号转导途径外,还存在细胞膜受体和细胞膜信号转导途径。  相似文献   

18.
Juvenile hormone (JH) receptors, methoprene-tolerant (Met) and Germ-cell expressed (Gce), transduce JH signals to induce Kr-h1 expression in Drosophila. Dual luciferase assay identified a 120-bp JH response region (JHRR) in the Kr-h1α promoter. Both in vitro and in vivo experiments revealed that Met and Gce transduce JH signals to induce Kr-h1 expression through the JHRR. DNA affinity purification identified chaperone protein Hsp83 as one of the proteins bound to the JHRR in the presence of JH. Interestingly, Hsp83 physically interacts with PAS-B and basic helix-loop-helix domains of Met, and JH induces Met-Hsp83 interaction. As determined by immunohistochemistry, Met is mainly distributed in the cytoplasm of fat body cells of the larval when the JH titer is low and JH induces Met nuclear import. Hsp83 was accumulated in the cytoplasm area adjunct to the nucleus in the presence of JH and Met/Gce. Loss-of-function of Hsp83 attenuated JH binding and JH-induced nuclear import of Met, resulting in a decrease in the JHRR-driven reporter activity leading to reduction of Kr-h1 expression. These data show that Hsp83 facilitates the JH-induced nuclear import of Met that induces Kr-h1 expression through the JHRR.  相似文献   

19.
20.
Juvenile hormone (JH), a sesquiterpenoid synthetized by the insect corpora allata (CA), plays critical roles in metamorphosis and reproduction. Penultimate or last step of JH synthesis is catalyzed by juvenile hormone acid O‐methyltransferase (JHAMT). Here we report the cloning and expression analysis of the JHAMT orthologue in the cockroach, Blattella germanica (L.) (BgJHAMT). BgJHAMT is mainly expressed in CA, with only expression traces in ovary. Three different isoforms, differing in the 3′‐UTR sequence, were identified. Isoform A shows between 35 and 65 times higher expression than B and C in CA from penultimate nymphal instar and adult females. RNAi‐triggered knock down of BgJHAMT produces a dramatic reduction of JH synthesis, concomitant with a decrease of fat body vitellogenin expression and basal follicle length. BgJHAMT mRNA levels in CA of females along the gonadotrophic cycle parallel, with a slight advancement, JH synthesis profile. BgJHAMT mRNA levels were reduced in starved females and in females in which we reduced nutritional signaling by knocking down insulin receptor and target of rapamycin (TOR). Results show that conditions that modify JH synthesis in adult B. germanica females show parallel changes of BgJHAMT mRNA levels and that the JH‐specific branch of the JH synthesis pathway is regulated in the same way as the mevalonate branch. Furthermore, we demonstrate that nutrition and its signaling through the insulin receptor and TOR pathways are essential for activating BgJHAMT expression, which suggests that this enzyme can be a checkpoint for the regulation of JH production in relation to nutritional status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号