首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The realization of an end‐to‐end integrated continuous lab‐scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter‐based cell‐retention, a continuous two column capture process, a virus inactivation step, a semi‐continuous polishing step (twin‐column MCSGP), and a batch‐wise flow‐through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity‐yield trade‐off of classical batch‐wise bind‐elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight‐through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end‐to‐end integration. The steady‐state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303–1313, 2017  相似文献   

2.
The semicontinuous twin‐column multicolumn countercurrent solvent gradient purification (MCSGP) process improves the trade‐off between purity and yield encountered in traditional batch chromatography, while its complexity, in terms of hardware requirements and process design, is reduced in comparison to process variants using more columns. In this study, the MCSGP process is experimentally characterized, specifically with respect to its unique degrees of freedom, i.e., the four switching times, which alternate the columns between interconnected and batch states. By means of isolation of the main charge isoform of an antibody, it is shown that purity is determined by the selection of the product collection window with negligible influence from the recycle phases. In addition, the amount of weak and strong impurities can be specifically attributed to the start and end of the collection, respectively. Due to higher abundance of weakly adsorbing impurities, the start of product collection influences productivity and yield more than the other switching times. Furthermore, most of the encountered tendencies scale between different loadings. The found trends can be rationalized from the corresponding batch chromatogram and therefore used during process design to obtain desirable process performances without extensive trial‐and‐error experimentation or complete model development and calibration.  相似文献   

3.
The novel "multicolumn countercurrent solvent gradient purification" (MCSGP) process has been modeled for the purification of a polypeptide mixture characterized by a strong non-linear competitive adsorption isotherm. As a model system, the purification of an industrial polypeptide mixture containing 46% of the hormone calcitonin has been selected. The many impurities contained in the mixture have been lumped into three key impurities, which are selected as the ones eluting closer to the main component. The simulation model allows for a better understanding of the complex operating behavior of the multicolumn system, which has been experimentally investigated in a previous work. Through a systematic parametric analyses of the model behavior, the main operating parameters controlling the process performance in terms of purity and yield are investigated. The study of internal liquid and adsorbed phase concentration profiles along the unit for the different operating conditions allow elucidating the working principle of the new separation process. It is found that the MCSGP unit achieves much higher yields for a given product purity than the corresponding single-column batch units.  相似文献   

4.
Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations. For continuous processing, unit operations such as capture chromatography have aspects that could be impacted by a change to continuous multicolumn operation, for example, do they clear viruses as well as a traditional batch single column. In this study we evaluate how modifying chromatographic parameters including the linear velocity and resin capacity utilization could impact virus clearance in the context of moving from a single column to multicolumn operation. A Design of Experiment (DoE) approach was taken with two model monoclonal antibodies (mAbs) and two bacteriophages used as mammalian virus surrogates. The DoE enabled the identification of best and worst-case scenario for virus clearance overall. Using these best and worst-case conditions, virus clearance was tested in single column and multicolumn modes and found to be similar as measured by Log Reduction Values (LRV). The parameters identified as impactful for viral clearance in single column mode were predictive of multicolumn modes. Thus, these results support the hypothesis that the viral clearance capabilities of a multicolumn continuous Protein A system may be evaluated using an appropriately scaled-down single mode column and equipment.  相似文献   

5.
Biomolecules are often purified via solvent gradient batch chromatography. Typically suitable smooth linear solvent gradients are applied to obtain the separation between the desired component and hundreds of impurities. The desired product is usually intermediate between weakly and strongly adsorbing impurities, and therefore a central cut is required to get the desired pure product. The stationary phases used for preparative and industrial separations have a low efficiency due to strong axial dispersion and strong mass transfer resistances. Therefore a satisfactory purification often cannot be achieved in a single chromatographic step. For large scale productions and for very valuable molecules, countercurrent operation such as the well known SMB process, is needed in order to increase separation efficiency, yield and productivity. In this work a novel multicolumn solvent gradient purification process (MCSGP-process) is introduced, which combines two chromatographic separation techniques, which are solvent gradient batch and continuous countercurrent SMB. The process consists of several chromatographic columns, which are switched in position opposite to the flow direction. Most of the columns are equipped with a gradient pump to adjust the modifier concentration at the column inlet. Some columns are interconnected, so that non pure product streams are internally, countercurrently recycled. Other columns are short circuited and operate in batch mode. As a working example the purification of an industrial stream containing 46% of the hormone Calcitonin is considered. It is found that for the required purity the MCSGP unit achieves a yield close to 100% compared to a maximum value of a single column batch chromatography of 66%.  相似文献   

6.
Affordability of biopharmaceuticals continues to be a challenge, particularly in developing economies. This has fuelled advancements in manufacturing that can offer higher productivity and better economics without sacrificing product quality in the form of an integrated continuous manufacturing platform. While platform processes for monoclonal antibodies have existed for more than a decade, development of an integrated continuous manufacturing process for bacterial proteins has received relatively scant attention. In this study, we propose an end‐to‐end integrated continuous downstream process (from inclusion bodies to unformulated drug substance) for a therapeutic protein expressed in Escherichia coli as inclusion body. The final process consisted of a continuous refolding in a coiled flow inverter reactor directly coupled to a three‐column periodic counter‐current chromatography for capture of the product followed by a three‐column con‐current chromatography for polishing. The continuous bioprocessing train was run uninterrupted for 26 h to demonstrate its capability and the resulting output was analyzed for the various critical quality attributes, namely product purity (>99%), high molecular weight impurities (<0.5%), host cell proteins (<100 ppm), and host cell DNA (<10 ppb). All attributes were found to be consistent over the period of operation. The developed assembly offers smaller facility footprint, higher productivity, fewer hold steps, and significantly higher equipment and resin utilization. The complexities of process integration in the context of continuous processing have been highlighted. We hope that the study presented here will promote development of highly efficient, universal, end‐to‐end, fully continuous platforms for manufacturing of biotherapeutics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:998–1009, 2017  相似文献   

7.
Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.  相似文献   

8.
A two‐step chromatography process for monoclonal antibody (mAb) purification from clarified cell culture supernatant (cCCS) was developed using cation exchange Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) as a capture step. After an initial characterization of the cell culture supernatant the capture step was designed from a batch gradient elution chromatogram. A variety of chromatographic materials was screened for polishing of the MCSGP‐captured material in batch mode. Using multi‐modal anion exchange in bind‐elute mode, mAb was produced consistently within the purity specification. The benchmark was a state‐of‐the‐art 3‐step chromatographic process based on protein A, anion and cation exchange stationary phases. The performance of the developed 2‐step process was compared to this process in terms of purity, yield, productivity and buffer consumption. Finally, the potential of the MCSGP process was investigated by comparing its performance to that of a classical batch process that used the same stationary phase. Biotechnol. Bioeng. 2010;107: 974–984. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
The charged monoclonal antibody (mAb) variants of the commercially available therapeutics Avastin®, Herceptin® and Erbitux® were separated by ion‐exchange gradient chromatography in batch and continuous countercurrent mode (MCSGP process). Different stationary phases, buffer conditions and two MCSGP configurations were used in order to demonstrate the broad applicability of MCSGP in the field of charged protein variant separation. Batch chromatography and MCSGP were compared with respect to yield, purity, and productivity. In the case of Herceptin®, also the biological activity of the product stream was taken into account as performance indicator. The robustness of the MCSGP process against feed composition variations was confirmed experimentally and by model simulations. Biotechnol. Bioeng. 2010;107:652–662. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host‐cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind‐and‐elute cation‐exchange chromatography (CEX) polishing step. A variant of the bind‐and‐elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%–1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low‐prevalence HCPs resulted in an effectively bimodal‐like distribution of HCPs along the length of a multi‐column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low‐prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.  相似文献   

11.
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco‐friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed‐batch culture of GS‐NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966–988, 2017  相似文献   

12.
Oligonucleotides (ONs) are gaining increasing importance as a promising novel class of biopharmaceuticals. Thanks to their fundamental role in gene regulation, they can be used to develop custom‐made drugs (also called N‐to‐1) able to act on the gene expression at pre‐translational level. With recent approvals of ON‐based therapeutics by the Food and Drug Administration (FDA), a growing demand for high‐quality chemically modified ONs is emerging and their market is expected to impressively prosper in the near future. To satisfy this growing market demand, a scalable and economically sustainable ON production is needed. In this paper, the state of the art of the whole ON production process is illustrated with the aim of highlighting the most promising routes toward the auspicated market‐size production. In particular, the most recent advancements in both the upstream stage, mainly based on solid‐phase synthesis and recombinant technology, and the downstream one, focusing on chromatographic techniques, are reviewed. Since ON production is projected to expand to the large scale, automatized multicolumn countercurrent technologies will reasonably be required soon to replace the current ones based on batch single‐column operations. This consideration is supported by a recent cutting‐edge application of continuous chromatography for the ON purification.  相似文献   

13.
The recently developed continuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Process has been reduced to a fully equivalent semicontinuous setup with only three chromatographic columns and three gradient pump modules. Actually the 3-column MCSGP unit can even achieve better performance than the original 6-column process due to an additional degree of freedom, that is a different switching time for the "batch lane" and the "interconnected lane." Experimental results for the 3-column MCSGP unit of the purification of an industrial multicomponent peptide mixture containing 46% of Calcitonin on a reversed phase resin are compared with model simulations. It is concluded, that the model is well suited to predict the system behavior and therefore to design its optimal operating conditions.  相似文献   

14.
Model-based design of integrated continuous train coupled with online process analytical technology (PAT) tool can be a potent facilitator for monitoring and control of Critical Quality Attributes (CQAs) in real time. Charge variants are product related variants and are often regarded as CQAs as they may impact potency and efficacy of drug. Robust pooling decision is required for achieving uniform charge variant composition for mAbs as baseline separation between closely related variants is rarely achieved in process scale chromatography. In this study, we propose a digital twin of a continuous chromatography process, integrated with an online HPLC-PAT tool for delivering real time pooling decisions to achieve uniform charge variant composition. The integrated downstream process comprised continuous multicolumn capture protein A chromatography, viral inactivation in coiled flow inverter reactor (CFIR), and multicolumn CEX polishing step. An online HPLC was connected to the harvest tank before protein A chromatography. Both empirical and mechanistic modeling have been considered. The model states were updated in real time using online HPLC charge variant data for prediction of the initial and final cut point for CEX eluate, according to which the process chromatography was directed to switch from collection to waste to achieve the desired charge variant composition in the CEX pool. Two case studies were carried out to demonstrate this control strategy. In the first case study, the continuous train was run for initially 14 h for harvest of fixed charge variant composition as feed. In the second case study, charge variant composition was dynamically changed by introducing forced perturbation to mimic the deviations that may be encountered during perfusion cell culture. The control strategy was successfully implemented for more than ±5% variability in the acidic variants of the feed with its composition in the range of acidic (13%–17%), main (18%–23%), and basic (59%–68%) variants. Both the case studies yielded CEX pool of uniform distribution of acidic, main and basic profiles in the range of 15 ± 0.8, 31 ± 0.3, and 53 ± 0.5%, respectively, in the case of empirical modeling and 15 ± 0.5, 31 ± 0.3, and 53 ± 0.3%, respectively, in the case of mechanistic modeling. In both cases, process yield for main species was >85% and the use of online HPLC early in the purification train helped in making quicker decision for pooling of CEX eluate. The results thus successfully demonstrate the technical feasibility of creating digital twins of bioprocess operations and their utility for process control.  相似文献   

15.
With cell culture titers and productivity increasing in the last few years, pressure has been placed on downstream purification to look at alternative strategies to meet the demand of biotech products with high dose requirements. Even when the upstream process is not continuous (perfusion based), adopting a more productive and/or continuous downstream process can be of significant advantage. Due to the recent trend in exploring continuous processing options for biomolecules, several enabling technologies have been assessed at Biogen. In this paper, we evaluate the capability of one of these technologies to streamline and improve our downstream mAb purification platform. Current conventional downstream polishing steps at Biogen are operated in flow‐through mode to achieve higher loadings while maintaining good selectivity. As titers increase, this would result in larger columns and larger intermediate product pool holding tanks. A semicontinuous downstream process linking the second and third chromatography steps in tandem can reduce/eliminate intermediate holding tanks, reduce overall processing time, and combine unit operations to reduce validation burdens. A pool‐less processing technology utilizing inline adjustment functionality was evaluated to address facility fit challenges for three high titer mAbs. Two different configurations of polishing steps were examined: (i) anion exchange and hydrophobic interaction and (ii) anion exchange and mixed mode chromatography. Initial laboratory scale proof of concept studies showed comparable performance between the batch purification process and the pool‐less process configuration.  相似文献   

16.
In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost‐effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high‐density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four‐column periodic counter‐current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high‐density perfusion CHO cell cultures were operated at a quasi‐steady state of 50–60 × 106 cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed‐batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time‐based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch‐column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non‐value‐added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Biotechnol. Bioeng. 2012; 109: 3018–3029. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The biopharmaceutical industry is evolving toward process intensification that can offer increased productivity and improved economics without sacrificing process robustness. A semi‐continuous downstream process linking purification/polishing unit operations in series can reduce or eliminate intermediate holding tanks and reduce overall processing time. Accordingly, we have developed a therapeutic monoclonal antibody polishing template comprised of a connected flow‐through polishing technologies that include activated carbon, cation exchange, and anion‐exchange chromatography. In this report, we evaluated fully‐connected pool‐less polishing with three flow‐through technologies, operating as a single skid to streamline and improve an mAb purification platform. Laboratory‐scale pool‐less processing was achieved without utilizing in‐line pH adjustment and conductivity dilution based on the previously optimized single process parameter. Two connected flow‐through configurations of polishing steps were evaluated: a two‐step process using anion exchange and cation exchange and a three step process using activated carbon, anion exchange and cation exchange chromatography. Laboratory‐scale proof of concept studies showed comparable performance between the batch purification process and the pool‐less process configuration. Three step polishing highly intensified the processes and provided higher process loading and achieved bulk drug specification with higher impurity clearance (>95%) and high overall mAb yield (>95%).  相似文献   

18.
Continuous virus inactivation (VI) remains one of the missing pieces while the biopharma industry moves toward continuous manufacturing. The challenges of adapting VI to the continuous operation are two‐fold: 1) achieving fluid homogeneity and 2) a narrow residence time distribution (RTD) for fluid incubation. To address these challenges, a dynamic active in‐line mixer and a packed‐bed continuous virus inactivation reactor (CVIR) are implemented, which act as a narrow RTD incubation chamber. The developed concept is applied using solvent/detergent (S/D) treatment for inactivation of two commonly used model viruses. The in‐line mixer is characterized and enables mixing of the viscous S/D chemicals to ±1.0% of the target concentration in a small dead volume. The reactor's RTD is characterized and additional control experiments confirm that the VI is due to the S/D action and not induced by system components. The CVIR setup achieves steady state rapidly before two reactor volumes and the logarithmic reduction values of the continuous inactivation process are identical to those obtained by the traditional batch operation. The packed‐bed reactor for continuous VI unites fully continuous processing with very low‐pressure drop and scalability.  相似文献   

19.
Bioprocess intensification can be achieved through high cell density perfusion cell culture with continuous protein capture integration. Protein passage and cell retention are commonly accomplished using tangential flow filtration systems consisting of microporous membranes. Significant challenges, including low efficiency and decaying product sieving over time, are commonly observed in these cell retention devices. Here, we demonstrate that a macroporous membrane overcomes the product sieving challenges when comparing to several other membrane chemistries and pore sizes within the microporous range. This way, variable chromatography column loading is avoided. The macroporous membrane yielded a 13,000 L/m2 volumetric throughput. The membrane's cut-off size results in an increased permeate turbidity due to particles passage, such as cell debris, through pores ranging from 1 to 4 µm. In addition, successful chromatography column plugging mitigation was achieved by employing depth filtration before the chromatographic step. Depth filtration volumetric throughputs were between 600 and 1,000 L/m2. Combing a macroporous cell retention device with a depth filter not only provided an alternative to address the challenge of undesired long protein residence times in the bioreactor due to product sieving decay, but also exhibited a throughput increase, making the integration of multicolumn capture chromatography with a perfusion cell culture a more robust process.  相似文献   

20.
In this study we develop the components of an integrated process for the continuous extraction and purification of a histidine-tagged fusion protein expressed as an inclusion body in Escherichia coli. Lac21 was selected as a model peptide and was expressed as a fusion to ketosteroid isomerase. A purification strategy was developed on a 1-ml batch column before successful scale-up and transfer to a continuous purification system, having a bed volume of 240 ml. Preliminary experiments proved cleavage of the fusion protein. The use of chemical extraction and continuous chromatography gives a flowsheet far superior to the traditional methods for inclusion body processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号