首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eu2+‐induced enhancement of defect luminescence of ZnS was studied in this work. While photoluminescence (PL) spectra exhibited 460 nm and 520 nm emissions in both ZnS and ZnS:Eu nanophosphors, different excitation characteristics were shown in their photoluminescence excitation (PLE) spectra. In ZnS nanophosphors, there was no excitation signal in the PLE spectra at the excitation wavelength λex > 337 nm (the bandgap energy 3.68 eV of ZnS); while in ZnS:Eu nanophosphors, two excitation bands appeared that were centered at 365 nm and 410 nm. Compared with ZnS nanophosphors, the 520 nm emission in the PL spectra was relatively enhanced in ZnS:Eu nanophosphors and, furthermore, in ZnS:Eu nanophosphors the 460 nm and 520 nm emissions increased more than 10 times in intensity. The reasons for these differences were analyzed. It is believed that the absorption of Eu2+ intra‐ion transition and subsequent energy transfer to sulfur vacancy, led to the relative enhancement of the 520 nm emission in ZnS:Eu nanophosphors. In addition, more importantly, Eu2+ acceptor‐bound excitons are formed in ZnS:Eu nanophosphors and their excited levels serve as the intermediate state of electronic relaxation, which decreases non‐radiative electronic relaxation and thus increases the intensity of the 460 nm and 520 nm emission dramatically. In summary, the results in this work indicate a new mechanism for the enhancement of defect luminescence of ZnS in Eu2+‐doped ZnS nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Aluminium oxide (Al2O3) has widely been used for catalysts, insulators, and composite materials for diverse applications. Herein, we demonstrated if γ‐Al2O3 was useful as a luminescence support material for europium (Eu) (III) activator ion. The hydrothermal method and post‐thermal treatment at 800°C were employed to synthesize Eu(III)‐doped γ‐Al2O3 nanofibre structures. Luminescence characteristics of Eu(III) ions in Al2O3 matrix were fully understood by taking 2D and 3D‐photoluminescence imaging profiles. Various sharp emissions between 580 to 720 nm were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu(III) activators. On the basis of X‐ray diffraction crystallography, Auger elemental mapping and the asymmetry ratio, Eu(III) ions were found to be well doped into the γ‐Al2O3 matrix at a low (1 mol%) doping level. A broad emission at 460 nm was substantially increased upon higher (2 mol%) Eu(III) doping due to defect creation. The first 3D photoluminescence imaging profiles highlight detailed understanding of emission characteristics of Eu(III) ions in Al oxide‐based phosphor materials and their potential applications.  相似文献   

3.
Luminescent materials used in flat panel displays, compact fluorescent lamps, and light-emitting diodes require high purity, uniform particle size, clean surfaces, spherical shape, and dense morphology to ensure long-term stability. Y2O3:Eu3+ is a widely studied red phosphor known for its characteristic photoluminescence (PL) emission at 613 nm with near-UV excitation at 392 nm. Many methods have been explored to synthesize Y2O3:Eu3+ nanoparticles with exceptional purity, consistent phases, and uniform particle sizes. The aim is to synthesize particles with pristine surfaces, spherical shape, and compact morphology. This study focuses on the low-temperature synthesis and PL investigation of Y2–xO3:Eux3+ nanophosphors using combustion with thioglycerol as fuel. The results are compared with Y2–xO3:Eux3+ red nanophosphors synthesized using wet chemical and nitrate combustion methods. The PL characteristics of the Y2–xO3:Eux3+ nanophosphors were analyzed using PL emission spectroscopy, X-ray diffraction, and scanning electron microscopy. These findings highlight the advantageous properties of the synthesized nanophosphors, such as their suitability for solid-state lighting applications in the lamp industry as highly efficient red phosphors. The combination of high purity, uniform particle size, clean surfaces, spherical shape, and dense morphology contributes to their potential for long-term stability and reliable performance in lighting devices.  相似文献   

4.
In this paper, the Eu3+–Eu2+ (4%, molar ratio)‐doped xAl2O3–ySiO2 (x = 0–2.5, y = 1–5) and xAl2O3–zMgO (x = 0–1.5, z = 0–3) composites phosphors with different Al2O3 to SiO2 (A/S) and Al2O3 to MgO (A/M) ratios were prepared using a high‐temperature solid‐state reaction under air atmosphere. The effects of the A/S and A/M on luminescence properties, crystal structure, electron spin resonance, and Commission Internationale de l’Eclairage chromaticity coordinates of the samples were systematically analyzed. These results indicated that the different A/S and A/M ratios in the matrix effectively affected the crystal phase, degrees of self‐reduction of Eu3+, and led the relative emission intensity of Eu2+/Eu3+ to change and adjust.  相似文献   

5.
An Er3+‐doped phosphor of Gd2O3 (Gd2O3:Er3+) was prepared using a conventional solid‐state reaction method. The structure and particle size were determined from X‐ray powder diffraction measurements. The average particle size of the phosphor was in between 20 and 50 nm. The particle size and structure of the phosphor were further confirmed by transmission electron microscopy (TEM) analysis. Luminescence spectra were recorded under excitation wavelengths of 275, 380, 515 and 980 nm. The visible upconversion and downconversion luminescence spectra of the Gd2O3:Er3+ phosphor were investigated as a function of Er3+ ion concentration. The upconverted emission at 980 nm excitation shows enhanced red emission with respect to green emission as the dopant concentration increased. Similar results were observed for downconversion emission under 275 and 380 nm excitation wavelengths. The mechanisms responsible for populating the 4S3/2 and 4 F9/2 levels, for green and red emissions, respectively, are different for different excitations and for different concentrations of Er3+. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A low temperature-assisted and oxalyl dihydrazide fuel-induced combustion synthesized series of uncalcined MgAl2O4:Eu3+ nanophosphors showed an average crystallite size of ~20 nm, and bandgap energy (Eg) of 4.50–5.15 eV, and were validated using density functional theory and found to match closely with the experimental values. The photoluminescence characteristic emission peaks of Eu3+ ions were recorded between 480 and 680 nm. The nanophosphors excited at 392 nm showed f–f transitions assigned as 5D07FJ (J = 0, 1, 2, and 3). The optimized MgAl2O4 phosphors had Commission Internationale de l'Eclairage coordinates in the red region, a correlated colour temperature of 2060 K, and a colour purity of 98.83%. The estimated luminescence quantum efficiency ( η) was observed to be ~63% using Judd–Ofelt analysis. Electrochemical and photocatalytic performance were explored and indicated its multifunctional applications. Therefore, MgAl2O4:Eu3+ nanophosphors could be used for the fabrication of light-emitting diodes, industrial dye degradation, and as electrodes for supercapacitor applications.  相似文献   

7.
Ru Liu  Xigui Wang 《Luminescence》2020,35(1):114-119
Eu3+‐doped 6LaPO4–3La3PO7–2La7P3O18 red luminescent phosphors were synthesized by co‐deposition and high‐temperature solid‐state methods and its polyphase state was confirmed by X‐ray diffraction analysis. Transmission electron microscopy showed the grain morphology as a mixture of rods and spheres. Luminescence properties of the phosphor were investigated and its red emission parameters were evaluated as a function of Eu3+ concentration (3.00–6.00 mol%). Excitation spectra of 6LaPO4–3La3PO7–2La7P3O18:Eu3+ showed strong absorption bands at 280, 395, and 466 nm, while the luminescence spectra exhibited prominent red emission peak centred at 615 nm (5D07F2) in the red region. CIE chromaticity coordinates of the 6LaPO4–3La3PO7–2La7P3O18:5%Eu3+ phosphor were (0.668, 0.313) in the red region, and defined its potential application as a red phosphor.  相似文献   

8.
Dy3+ and Eu3+ activated Ca3Y2Si3O12 phosphors were synthesized by the solid‐state synthesis method. The phosphors were characterized by X‐ray diffraction (XRD), mechanoluminescence (ML), thermoluminescence (TL) and photoluminescence (PL) to determine structure and luminescence. For ML glow curves, only one peak was observed, as only one type of luminescence centre was formed during irradiation. The Ca3Y2Si3O12:Dy3+ TL glow curve showed a single peak at 151.55°C and the Ca3Y2Si3O12:Eu3+ TL glow curve peaked at 323°C with a small peak at 192°C, indicating that two types of traps were activated. The trapping parameters for both the samples were calculated using Chen's peak shape method. Dy3+‐activated Ca3Y2Si3O12 showed emission at 482 and 574 nm when excited by a 351 nm excitation wavelength, whereas the Eu3+‐activated Ca3Y2Si3O12 phosphor PL emission spectra showed emission peaks at 613 nm, 591 nm, 580 nm when excited at 395 nm wavelength. When excited at 466 nm, prominent emission peaks were observed at their respective positions with very slight shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Yongfu Teng 《Luminescence》2019,34(4):432-436
In the Ba9Lu2Si6O24 (BLS) host, Ce3+ shows cyan emissions peaking at 490 nm under 400 nm excitations. BLS:Tb3+ only can be effectively excited by 254 nm light and gives rise to green emissions at 553 nm. However, both the cyan and green emissions can be obtained in BLS:Ce3+,Tb3+ under 400 nm excitations due to effective energy transfers from Ce3+ to Tb3+. BLS:Mn2+ shows red emissions peaking at 610 nm under 414 nm excitations. By co‐doping Ce3+, Tb3+ and Mn2+, tunable full‐color emissions were obtained. The BLS:0.3Ce3+,0.6Tb3+,0.15Mn2+ single phosphor exhibits a white light with a high color rendering index of 85 and a correlated color temperature of 5480 K under 400 nm excitation.  相似文献   

10.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Sr4Al2O7:Eu3+ and Sr4Al2O7:Dy3+ phosphors with alkali metal substitution were prepared using a sol–gel method. The effects of a charge compensator R on the structure and luminescence of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr4Al2O7. Under ultraviolet excitation, all Sr4Al2O7:Eu3+,R+ samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu3+ ions. All Sr4Al2O7:Dy3+,R+ phosphors showed two emission peaks at 492 and 582 nm, due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The luminescence intensity of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light‐emitting diodes with a near‐ultraviolet chip.  相似文献   

12.

The luminescence properties of pure and ZrO2: Eu+3 nanophosphors with different concentration of the Eu+3 is synthesised and studied. A novel and environment benign microwave-induced hydrothermal process is used to synthesise the nanoparticles. As-formed pure ZrO2 nanoparticles were X-ray amorphous, and upon calcination at higher temperatures, they crystallise to a combination of both cubic and tetragonal phases. However, the ZrO2: Eu+3 nanophosphors prepared through the same technique under similar conditions yield exclusively cubic ZrO2, and it entirely depends on the concentration of Eu+3 as revealed by XRD studies. The nanoparticles are found to be spherical, non-porous and agglomerated as observed by SEM. The surface area of the nanoparticles of pure ZrO2 is found to be 30 m2/g for as-formed samples and 130 m2/g for calcined samples by BET studies. The increase in the surface area for calcined sample is due to the escaping of the adsorbed hydroxyl groups from the surface of the nanoparticles. The photoluminescence properties of the pure and Eu+3-doped ZrO2 nanoparticles were measured under 251 nm excitation wavelength. Under this excitation, pure ZrO2 gives the emissions at 394 nm, whereas Eu+3-doped nanoparticles gives the emissions at 613 nm, which corresponds to inter-f-f transition from 5D07F2 (613 nm) and is arising due to electronic dipole in the Eu+3 activator ion. CIE colour space (x, y) coordinates corresponding to 613 nm in the CIE chromaticity diagram is 0.680, 0.319.

Graphical Abstract

  相似文献   

13.
Two synthesis routes, solid‐state reaction and precipitation reaction, were employed to prepare BaSiO3:Eu2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid‐state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO3:Eu2+ phosphors was performed by evaluation of X‐ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO3:Eu2+ phosphor, while the green emission was ascribed to a small amount of Ba2SiO4:Eu2+ compound that was present in the solid‐state reaction sample. This work clarifies the luminescence properties of Eu2+ ions in BaSiO3 and Ba2SiO4 hosts.  相似文献   

14.
BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors were synthesized at 1300°C in air by conventional solid‐state reaction method. Phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and thermoluminescence (TL) spectra. Optimal PL intensity for BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors at 276 nm excitation were found to be x = 0.24 and y = 0.125, respectively. The PL intensity of Eu3+ emission could only be enhanced by 1.3 times with incorporation of Na+ into the BaGd2O4 host. Enhanced luminescence was attributed to the flux effect of Na+ ions. However, when BaGd2O4:Eu3+ phosphors were codoped with Na+ ions, the induced defects confirmed by TL spectra impaired the emission intensity of Eu3+ ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

16.
LiMgBO3:Dy3+, a low Zeff material was prepared using the solution combustion method and its luminescence properties were studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM), thermoluminescence (TL), photoluminescence (PL), Fourier transform infrared spectroscopy, and electron paramagnetic resonance (EPR) techniques. Reitvield refinement was also performed for the structural studies. The PL emission spectra for LiMgBO3:Dy3+ consisted of two peaks at 478 due to the 4F9/26H15/2 magnetic dipole transition and at 572 nm due to the hypersensitive 4F9/26H13/2 electric dipole transition of Dy3+, respectively. A TL study was carried out for both the γ‐ray‐irradiated sample and the C5+ irradiated samples and was found to show high sensitivity for both. Moreover the γ‐ray‐irradiated LiMgBO3:Dy3+ sample showed linearity in the dose range 10 Gy to 1 kGy and C5+‐irradiated samples show linearity in the fluence range 2 × 1010 to 1 × 1011 ions/cm2. In the present study, the initial rise method, various heating rate method, the whole glow curve method, glow curve convolution deconvolution function, and Chen's peak shape method were used to calculate kinetic parameters to understand the TL glow curve mechanism in detail. Finally, an EPR study was performed to examine the radicals responsible for the TL process.  相似文献   

17.
The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy3+ activated LiCaBO3 shows emission at 486 and 577 nm due to 4 F9/26H15/2 and 4 F9/26H13/2 transition, respectively, whereas the PL emission spectra of Ce3+ activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce3+ ion. The thermoluminescence study was also carried out for both these phosphors for γ‐ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4–3.1 Rad dose γ‐rays. Linear behaviour over this dose range was observed. Gamma ray‐irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C5+ ion beam exposure in the range of 3.75 × 1012 – 7.5 × 1013 ion cm–2 fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

19.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

20.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号